Phoenix has decided to become a scientist! He is currently investigating the growth of bacteria.
Initially, on day 1, there is one bacterium with mass 1.
Every day, some number of bacteria will split (possibly zero or all). When a bacterium of mass m splits, it becomes two bacteria of mass m2 each. For example, a bacterium of mass 3 can split into two bacteria of mass 1.5.
Also, every night, the mass of every bacteria will increase by one.
Phoenix is wondering if it is possible for the total mass of all the bacteria to be exactly n. If it is possible, he is interested in the way to obtain that mass using the minimum possible number of nights. Help him become the best scientist!
Input
The input consists of multiple test cases. The first line contains an integer t (1≤t≤1000) — the number of test cases.
The first line of each test case contains an integer n (2≤n≤109) — the sum of bacteria masses that Phoenix is interested in.
Output
For each test case, if there is no way for the bacteria to exactly achieve total mass n, print -1. Otherwise, print two lines.
The first line should contain an integer d — the minimum number of nights needed.
The next line should contain d integers, with the i-th integer representing the number of bacteria that should split on the i-th day.
If there are multiple solutions, print any.
Example
Input
3
9
11
2
Output
3
1 0 2
3
1 1 2
1
0
Note
In the first test case, the following process results in bacteria with total mass 9:
Day 1: The bacterium with mass 1 splits. There are now two bacteria with mass 0.5 each.
Night 1: All bacteria’s mass increases by one. There are now two bacteria with mass 1.5.
Day 2: None split.
Night 2: There are now two bacteria with mass 2.5.
Day 3: Both bacteria split. There are now four bacteria with mass 1.25.
Night 3: There are now four bacteria with mass 2.25.
The total mass is 2.25+2.25+2.25+2.25=9. It can be proved that 3 is the minimum number of nights needed. There are also other ways to obtain total mass 9 in 3 nights.
In the second test case, the following process results in bacteria with total mass 11:
Day 1: The bacterium with mass 1 splits. There are now two bacteria with mass 0.5.
Night 1: There are now two bacteria with mass 1.5.
Day 2: One bacterium splits. There are now three bacteria with masses 0.75, 0.75, and 1.5.
Night 2: There are now three bacteria with masses 1.75, 1.75, and 2.5.
Day 3: The bacteria with mass 1.75 and the bacteria with mass 2.5 split. There are now five bacteria with masses 0.875, 0.875, 1.25, 1.25, and 1.75.
Night 3: There are now five bacteria with masses 1.875, 1.875, 2.25, 2.25, and 2.75.
The total mass is 1.875+1.875+2.25+2.25+2.75=11. It can be proved that 3 is the minimum number of nights needed. There are also other ways to obtain total mass 11 in 3 nights.
In the third test case, the bacterium does not split on day 1, and then grows to mass 2 during night 1.
还是太菜了,这套codeforces每一个题都要思考很久。。
思路:首先,我们可以肯定的是,分裂对于总质量是没有影响的。对总质量有影响的是,分裂之后数量变多,每晚上都要增加1个质量单位。
要想所需要的天数最少的话,那么每一天应该尽可能的所有的都增加。一开始的是1,那么每一天增加的细胞质量就是1,2,4…2^m。如果再成倍增加的话,就会超过n,假设还差x个质量,如果2<=x<=4的话,那么我们就让每一天增加的顺序为1,2,x,4,8…。这样就可以保证最后肯定是n,而且需要的天数最少了。
代码如下:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
vector<int> ans;
int i=1;
while(1)//这里ans添加的数是这一天一共的细胞数量。
{
if(i<=n) ans.push_back(i),n-=i;
else break;
i*=2;
}
if(n) ans.push_back(n);
sort(ans.begin(),ans.end());
cout<<ans.size()-1<<endl;
for(int i=1;i<ans.size();i++) cout<<ans[i]-ans[i-1]<<" ";//因为求得是每一天多少细胞分裂,也就是增加了多少细胞。因此需要相减。
cout<<endl;
}
return 0;
}
很好的一道题目。
努力加油a啊,(o)/~