P6055 [RC-02] GCD(莫比乌斯反演+杜教筛)

题目链接:点击这里

题目大意:
给定正整数 n n n 求:
∑ i = 1 n ∑ j = 1 n ∑ p = 1 ⌊ n j ⌋ ∑ q = 1 ⌊ n j ⌋ [ gcd ⁡ ( i , j ) = 1 ] [ gcd ⁡ ( p , q ) = 1 ] \sum_{i=1}^n\sum_{j=1}^n\sum_{p=1}^{\lfloor \frac{n}{j} \rfloor}\sum_{q=1}^{\lfloor \frac{n}{j} \rfloor}[\gcd(i,j)=1][\gcd(p,q)=1] i=1nj=1np=1jnq=1jn[gcd(i,j)=1][gcd(p,q)=1]

题目分析:
∑ i = 1 n ∑ j = 1 n ∑ p = 1 ⌊ n j ⌋ ∑ q = 1 ⌊ n j ⌋ [ gcd ⁡ ( i , j ) = 1 ] [ gcd ⁡ ( p , q ) = 1 ] \sum_{i=1}^n\sum_{j=1}^n\sum_{p=1}^{\lfloor \frac{n}{j} \rfloor}\sum_{q=1}^{\lfloor \frac{n}{j} \rfloor}[\gcd(i,j)=1][\gcd(p,q)=1] i=1nj=1np=1jnq=1jn[gcd(i,j)=1][gcd(p,q)=1]
= ∑ i = 1 n ∑ j = 1 n ∑ p = 1 n ∑ q = 1 n [ gcd ⁡ ( i , j ) = 1 ] [ gcd ⁡ ( p , q ) = j ] =\sum_{i=1}^n\sum_{j=1}^n\sum_{p=1}^{n}\sum_{q=1}^{n}[\gcd(i,j)=1][\gcd(p,q)=j] =i=1nj=1np=1nq=1n[gcd(i,j)=1][gcd(p,q)=j]
合并一下:
= ∑ i = 1 n ∑ p = 1 n ∑ q = 1 n [ gcd ⁡ ( i , p , q ) = 1 ] =\sum_{i=1}^n\sum_{p=1}^{n}\sum_{q=1}^{n}[\gcd(i,p,q)=1] =i=1np=1nq=1n[gcd(i,p,q)=1]
反演一下:
= ∑ i = 1 n ∑ p = 1 n ∑ q = 1 n ∑ d ∣ gcd ⁡ ( i , p , q ) μ ( d ) =\sum_{i=1}^n\sum_{p=1}^{n}\sum_{q=1}^{n}\sum_{d|\gcd(i,p,q)}\mu(d) =i=1np=1nq=1ndgcd(i,p,q)μ(d)
= ∑ d = 1 n ∑ i = 1 n ∑ p = 1 n ∑ q = 1 n μ ( d ) [ d ∣ i ] [ d ∣ p ] [ d ∣ q ] =\sum_{d=1}^n\sum_{i=1}^n\sum_{p=1}^{n}\sum_{q=1}^{n}\mu(d)[d|i][d|p][d|q] =d=1ni=1np=1nq=1nμ(d)[di][dp][dq]
= ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ p = 1 ⌊ n d ⌋ ∑ q = 1 ⌊ n d ⌋ μ ( d ) =\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{p=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{q=1}^{\lfloor \frac{n}{d} \rfloor}\mu(d) =d=1ni=1dnp=1dnq=1dnμ(d)
= ∑ d = 1 n μ ( d ) ⌊ n d ⌋ 3 =\sum_{d=1}^n\mu(d)\lfloor \frac{n}{d} \rfloor ^3 =d=1nμ(d)dn3
然后整除分块套个杜教筛求 μ \mu μ 即可

具体细节见代码:

//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<unordered_map>
#define ll long long
#define inf 0x3f3f3f3f
//#define int  ll
#define endl '\n'
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 5e6+5;
const int mod = 998244353;
const double pi = acos(-1);
const double eps = 1e-8;
int n,cnt,pri[maxn],mu[maxn],sum[maxn],ans;
bool vis[maxn];
void get_pri(int n)
{
	mu[1] = 1;
	for(int i = 2;i <= n;i++)
	{
		if(!vis[i]) 
		{
			pri[++cnt] = i;
			mu[i] = -1;
		}
		for(int j = 1;j <= cnt && i*pri[j] <= n;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) break;
			mu[i*pri[j]] = -mu[i];
		}
	}
	for(int i = 1;i <= n;i++) sum[i] = sum[i-1]+mu[i];
}
unordered_map<int,int>mp;
int get_mu(int x)
{
	if(x < maxn) return sum[x];
	if(mp[x]) return mp[x];
	ll res = 1;
	for(ll l = 2,r;l <= x;l = r+1) //可能越界 
	{
		r = x/(x/l);
		res -= (r-l+1)*get_mu(x/l);
	}
	return mp[x] = res;
}
ll qpow(ll a,ll b)
{
	ll res = 1;
	while(b)
	{
		if(b&1) res = res*a%mod;
		a = a*a%mod;
		b >>= 1;
	}
	return res;
}
int main() 
{
	n = read();
	get_pri(max((int)sqrt(n),5000000));
	for(int i = 1,j;i <= n;i = j+1)
	{
		j = min(n,n/(n/i));
		int mul = (ll)(n/i)*(n/i)%mod*(n/i)%mod;
		ans = (ans+(ll)(get_mu(j)-get_mu(i-1))*mul%mod+mod)%mod;
	}
	cout<<ans<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值