HIVE 用户自定义函数UDAF实例(整合SUM+AVG带注释)

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.serde2.lazybinary.LazyBinaryStruct;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

/**
 * TODO(round + avg 函数功能整合)
 * <p>
 * @author   忘尘
 * @Date	 2020年6月2日 	 
 */
public class GenericUDAFAveragePlus extends AbstractGenericUDAFResolver {

	// 重写实现AbstractGenericUDAFResolver函数的执行器
	@Override
	public GenericUDAFEvaluator getEvaluator(TypeInfo[] info) throws SemanticException {
		// 验证参数的有效性
		if (null != info && info.length == 1) {
			// 正常情况

			// 判断是不是简单类型
			if (info[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
				throw new UDFArgumentException("该函数该函数只能接收接收简单类型的参数!");
			}
			// 判断是不是Long类型
			// bigint -> long
			// 类型转换
			PrimitiveTypeInfo pti = (PrimitiveTypeInfo) info[0];
			if (!pti.getPrimitiveCategory().equals(PrimitiveObjectInspector.PrimitiveCategory.LONG)) {
				throw new UDFArgumentException("该函数只能接收Long类型的参数");
			}
		} else {
			// 不正常情况
			throw new UDFArgumentException("该函数需要接收参数!并且只能传递一个参数!");
		}

		return new MyGenericUDAFEvaluator();

	}

	// 创建自己的执行器
	private static class MyGenericUDAFEvaluator extends GenericUDAFEvaluator {
		// 自定义我们自己的缓冲区类型 保存数据处理的临时结果  
		private static class MyAggregationBuffer extends AbstractAggregationBuffer{
			// 定义缓冲区中存储什么
			// 保存sum 和count
			private Double sum = 0D;
			private Long count = 0L;
			public Double getSum() {
				return sum;
			}
			public void setSum(Double sum) {
				this.sum = sum;
			}
			public Long getCount() {
				return count;
			}
			public void setCount(Long count) {
				this.count = count;
			}
			
		}
		// 创建缓冲区对象
		@Override
		public AggregationBuffer getNewAggregationBuffer() throws HiveException {
			printMode("getNewAggregationBuffer");
			return new MyAggregationBuffer();
		}
		// 初始化 参数校验 返回值设置 
		// 一个阶段调用一次
		@Override
		public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
			printMode("init");
			// 保留父类调用
			super.init(m, parameters);
			// 实现自己的
			// 根据不同的执行阶段返回不同的数据
			// 需求1:mapper阶段 包括map(PARTIAL1)和combiner(PARTIAL2) 需要返回sum+count->struct
			if (m == Mode.PARTIAL1 || m == Mode.PARTIAL2) {
				List<String> structFieldNames = new ArrayList<String>();
				List<ObjectInspector> structFieldObjectInspectors = new ArrayList<ObjectInspector>();
				// struct<sum:double,count:bigint>
				structFieldNames.add("sum");
				structFieldNames.add("count");
				structFieldObjectInspectors.add(PrimitiveObjectInspectorFactory.writableDoubleObjectInspector);
				structFieldObjectInspectors.add(PrimitiveObjectInspectorFactory.writableLongObjectInspector);
				// 返回
				return ObjectInspectorFactory.getStandardStructObjectInspector(structFieldNames, structFieldObjectInspectors);
			}else {
				// reduce阶段
				return PrimitiveObjectInspectorFactory.writableStringObjectInspector;
			}
			
		}
		// AggregationBuffer是聚合函数缓冲区对象 贯穿于 聚合函数始终的一个数据传输对象
		// 擦写缓冲区 让缓冲区重复使用
		@Override
		public void reset(AggregationBuffer agg) throws HiveException {
			printMode("reset");
			((MyAggregationBuffer)agg).setCount(0L);
			((MyAggregationBuffer)agg).setSum(0D);
		}
		
		private Long p = 0L;
//		private Long history_count = 0L;
//		private Double history_sum = 0D;
		
		private Long current_count = 0L;
		private Double current_sum = 0D;
		// Mapper类的map函数用于处理输入数据即迭代局部数据的 
		@Override
		public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {
			printMode("iterate");
			// parameters[0]为传入的参数,每次一个 为bigint类型
			// 先将其转为string类型,再转为Long
			p = Long.parseLong(String.valueOf(parameters[0]).trim());
			// map的循环 将数据放入缓冲区
			// 将agg转为自己的缓冲区
			MyAggregationBuffer ab = (MyAggregationBuffer) agg;
			// 从缓冲区中获取之前存储的数据
//			history_count = ab.getCount();
//			history_sum = ab.getSum();
			//进行本次循环操作
			current_sum += p;
			current_count++;
			// 保存本次数据
			ab.setCount(current_count);
			ab.setSum(current_sum);
			
		}
		
		// 定义一个结构进行数据的存储
		private Object[] mapout = {new DoubleWritable(),new LongWritable()};
		
		// map的最终结果输出方法  处理全部输出数据中的部分数据  
		@Override
		public Object terminatePartial(AggregationBuffer agg) throws HiveException {
			printMode("terminatePartial");
			// 获取map的最终输出
			MyAggregationBuffer ab = (MyAggregationBuffer) agg;
			((DoubleWritable)mapout[0]).set(ab.getSum());
			((LongWritable)mapout[1]).set(ab.getCount());
			// 直接返回mapout
			return mapout;

		}
		// 进行  map 局部结果的全局化处理 Combiner 和 Reducer的reduce方法
		// partial来自terminatePartial的返回值
		@Override
		public void merge(AggregationBuffer agg, Object partial) throws HiveException {
			printMode("merge");
			// map结构通过网络到partial 要将partial转为结构
			if (partial instanceof LazyBinaryStruct) {
				// 强转参数
				LazyBinaryStruct lbs = (LazyBinaryStruct) partial;
				
				DoubleWritable sum = (DoubleWritable) lbs.getField(0);
				LongWritable count = (LongWritable) lbs.getField(1);
				
				// 将本次map输出的数据放到reducer的缓冲区
				MyAggregationBuffer ab = (MyAggregationBuffer) agg;
				ab.setCount(ab.getCount() + count.get());
				ab.setSum(ab.getSum() + sum.get());
			}

		}
		private Text reduceout = new Text();
		// Combiner 或 Reducer的最终输出方法
		@Override
		public Object terminate(AggregationBuffer agg) throws HiveException {
			printMode("terminate");
			// 获取reduce累加之后的最终结果
			MyAggregationBuffer ab = (MyAggregationBuffer) agg;
			Double sum = ab.getSum();
			Long count = ab.getCount();
			Double avg = sum/count;
			DecimalFormat df = new DecimalFormat("###,###.00");
			reduceout.set(df.format(avg));
			return reduceout;
		}
		// 打印个阶段信息
        public void printMode(String mname){
            System.out.println("=================================== "+mname+" is Running! ================================");
        }

	}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值