题目
题目描述
古老的显示屏是由N×M个像素(Pixel)点组成的。一个像素点的位置是根据所在行数和列数决定的。例如P(2,1)表示第2行第1列的像素点。那时候,屏幕只能显示黑与白两种颜色,人们用二进制0和1来表示。0表示黑色,1表示白色。当计算机发出一个指令:P(x,y)=1,则屏幕上的第x行第y列的阴极射线管就开始工作,使该像素点显示白色,若P(x,y)=0,则对应位置的阴极射线管不工作,像素点保持黑色。在某一单位时刻,计算机以N×M二维01矩阵的方式发出显示整个屏幕图像的命令。
例如,屏幕是由3×4的 对应屏幕显示应为:
像素点组成,在某单位时刻,
计算机发出如下命令:
0001 0011 0110
假设放大后,一个格子表示一个像素点
由于未知的原因,显示黑色的像素点总是受显示白色的像素点的影响——可能是阴极射线管工作的作用。并且,距离越近,影响越大。这里的距离定义如下:设有像素点P1(x1,y1)和像素点P2(x2,y2),则它们之间的距离D(P1,P2):D(P1,P2)=|x1-x2|+|y1-y2| 在某一时刻,计算机发出显示命令后,科学家们期望知道,每个像素点和其最近的显示白色的像素点之间的最短距离是多少——科学家们保证屏幕上至少有一个显示白色的像素点。
上面的例子中,像素P(1,1)与最近的白色像素点之间的距离为3,而像素P(3,2)本身显示白色,所以最短距离为0。
输入输出格式
输入格式:
第一行有两个数字,N和M (1<=N,M<=182),表示屏幕的规格。
以下N行,每行M个数字,0或1。为计算机发出的显示命令。
输出格式:
输出文件有N行,每行M个数字,中间用1个空格分开。第i行第j列的数字表示距像素点P(i,j)最近的白色像素点的最短距离。
输入输出样例
输入样例#1:
3 4
0001
0011
0110
输出样例#1:
3 2 1 0
2 1 0 0
1 0 0 1
说明
对于30%的数据:N*M<=10000;
对于100%的数据:N*M<=182^2。
分析
这道题目求最短路径长度啊,真是似曾相识,是不是就,一看就成了一个广度优先搜索了?没错,这就是一道广度优先搜索的模板题。
有人会不服
有人会说,为啥不能用深搜,深搜的的代码可简单了。但是看这个数据,N*M<=182^2,如果深搜就会超时,说不定那个就爆栈了。
思路
这道题我们只需要先把所有值为1的点距离设为0(初始化),将其位置依次进队,依次扩展没有计算过距离的点,每次拓展都队头后移,那么队头到1点的距离+1就是拓展的点的距离(广度优先搜索的基本思想,用队列维护)。
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
struct MAP
{
int x,y;
}a[1000010];
//维护一个队列来记录进队顺序
bool f[1010][1010];
//标记这个点有没有被搜索过。
int d[1010][1010];
//这个点就是,用来存最短距离的,初值全部为0;
int dx[5]={0,0,0,-1,1},dy[5]={0,-1,1,0,0};
//direct!!方向数组是个小技能,学会能发挥很大的威力
int tail=0,head=0;
//队头和队尾
int main()
{
memset(f,true,sizeof(f));
//初始化全部标为true,访问过。
scanf("%d%d",&n,&m);
//读入啊
for(int i=1;i<=n;i++)
{
string s;
cin>>s;
//读入本行的所有元素
for(int j=0;j<s.size();j++)
if(s[j]=='0')
f[i][j+1]=false;
//如果是0就标记为没有访问过,反过来说,就是把所有1都标记为访问过了
else
{
d[i][j+1]=0;
//初始化距离0;
f[i][j+1]=true;
//访问过啦
a[++tail].x=i;
a[tail].y=j+1;
//入队
}
}
//按队列顺序开始搜索
for(head=1;head<=tail;head++)//枚举队首
{
for(int i=1;i<=4;i++)
//用direct数组来向四方扩展。
{
int xx=a[head].x+dx[i],yy=a[head].y+dy[i];
//方向数组的用处就在这里了
if(!f[xx][yy])
//如果没有被访问过
{
d[xx][yy]=d[a[head].x][a[head].y]+1;
//这个点的距离=队头距离+1;
f[xx][yy]=true;
//标记访问过
a[++tail].x=xx;
a[tail].y=yy;
//入队。
}
}
}
//d数组就是距离,现在可以输出了
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf("%d ",d[i][j]);
printf("\n");
}
return 0;
}