复数——概念和代数运算

复数的引入

追根求源,最初是为了求解没有实数根的二次方程。例如求解

x2+1=0 x 2 + 1 = 0

这个由实数组成的方程,显然没有实数根。
所以复数集可以看成实数集合的一个自然扩充。
首先引入一个“新数” i i 。使它满足
i2=1

也就是说 i i
x2+1=0

的解。
我们再给复数定义:
形如 z=a+bi z = a + b i 的数就是复数。
其中 a a b分别叫做复数 z z 的实部和虚部。
注意,b才是虚部, bi b i 不是虚部。
记作:
a=Re(z),b=Im(z) a = R e ( z ) , b = I m ( z )

复数 z=a+bi z = a + b i 的分类

当虚部 b=0 b = 0 时,复数 z z 是实数;
当虚部b!=0时,复数 z z 是虚数;
当虚部b!=0,且实部 a=0 a = 0 时,复数 z z 是纯虚数。

一些集合的记号

RC

PQ P — — 虚 数 集 , Q — — 纯 虚 数 集

有下列关系:
RP=ϕ R ∩ P = ϕ

RP=C R ∪ P = C

QPC Q ⊊ P ⊊ C

复数相等的充分必要条件

设两个复数分别为 z1=a+bi z 1 = a + b i , z2=c+di z 2 = c + d i ,而二者相等的充分必要条件是 a=c a = c 而且 b=d b = d

化虚为实是复数问题的通性通法

复数的运算法则

对于两个复数 z1=a+bi z 1 = a + b i z2=c+di z 2 = c + d i
z1+z2=(a+c)+(b+d)i z 1 + z 2 = ( a + c ) + ( b + d ) i
z1z2=(ac)+(bd)i z 1 − z 2 = ( a − c ) + ( b − d ) i
z1×z2=(a+bi)(c+di)=(acbd)+(ad+bc)i z 1 × z 2 = ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i
z1z2=a+bic+di=(a+bi)×(cdi)(c+di)×(cdi)=(ac+bd)+(bcad)ic2+d2 z 1 z 2 = a + b i c + d i = ( a + b i ) × ( c − d i ) ( c + d i ) × ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2

复数的运算定律

复数的加法满足交换律,结合律。
也就是

z1+z2=z2+z1 z 1 + z 2 = z 2 + z 1

(z1+z2)+z3=z1+(z2+z3) ( z 1 + z 2 ) + z 3 = z 1 + ( z 2 + z 3 )

复数的乘法满足交换律、结合律,以及乘法对于加法的分配律。
也就是
z1×z2=z2×z1 z 1 × z 2 = z 2 × z 1

(z1z2)z3=z1(z2z3) ( z 1 z 2 ) z 3 = z 1 ( z 2 z 3 )

z1(z2+z3)=z1z2+z1z3 z 1 ( z 2 + z 3 ) = z 1 z 2 + z 1 z 3

共轭复数

定义

当两个复数实部相等,虚部互为相反数时,就称其互为共轭复数。特别地,若复数的虚部不为零时,也称作互为共轭虚数。对于复数 z=a+bi(abR) z = a + b i ( a 、 b ∈ R ) ,它的共轭复数用 z¯=abi(abR) z ¯ = a − b i ( a 、 b ∈ R ) 来表示。
共轭复数有如下基本性质

(1)z1±z2¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯=z1¯¯¯¯¯±z2¯¯¯¯¯ ( 1 ) z 1 ± z 2 ¯ = z 1 ¯ ± z 2 ¯

(2)z1z2¯¯¯¯¯¯¯¯¯=z1¯¯¯¯¯ z2¯¯¯¯¯ ( 2 ) z 1 z 2 ¯ = z 1 ¯   z 2 ¯

(3)(z1z2)¯¯¯¯¯¯¯¯¯¯=z1¯¯¯¯¯z2¯¯¯¯¯ ( 3 ) ( z 1 z 2 ) ¯ = z 1 ¯ z 2 ¯

(4)zn¯¯¯¯¯=(z¯¯¯)n ( 4 ) z n ¯ = ( z ¯ ) n

(5)z+z¯¯¯=2Re(z),zz¯¯¯=2iIm(z) ( 5 ) z + z ¯ = 2 R e ( z ) , z − z ¯ = 2 i I m ( z )

(6)z¯¯¯¯¯¯=z ( 6 ) z ¯ ¯ = z

(7)zz¯¯¯=z;zz¯¯¯=zz!=0 ( 7 ) z 是 实 数 的 充 分 必 要 条 件 是 z ¯ = z ; z 是 纯 虚 数 的 充 分 必 要 条 件 是 z ¯ = − z 且 z ! = 0

复数的几何形式

复数 z z 和复平面上的点Z(a,b)有着一一对应的关系,同时,复平面上的点 Z(a,b) Z ( a , b ) 和向量 OZ O Z → 有着一一对应的关系。所以复数 z z 和向量OZ有着一一对应的关系。
复数的模我们定义为对应向量的模。
也就是 |z|=a2+b2 | z | = a 2 + b 2
关于复数的模,有如下的基本性质。

(1)zz¯¯¯=|z|2=|z¯¯¯|2 ( 1 ) z z ¯ = | z | 2 = | z ¯ | 2
;
(2)||z1|||z2||z1±z2||z1|+|z2| ( 2 ) | | z 1 | − | | z 2 | ≤ | z 1 ± z 2 | ≤ | z 1 | + | z 2 |

(3)|z|max{|Re(z)|,|Im(z)|} ( 3 ) | z | ≥ m a x { | R e ( z ) | , | I m ( z ) | }

例题

已知复数 z1=(m3)+(m1)i,z2=(2m5)+(m2+m2)i z 1 = ( m − 3 ) + ( m − 1 ) i , z 2 = ( 2 m − 5 ) + ( m 2 + m − 2 ) i ,且 z1>z2¯¯¯¯¯ z 1 > z 2 ¯ ,试求实数 m m 的值。

z1>z2¯可知, z1 z 1 z2¯¯¯¯¯ z 2 ¯ 都是实数。
也就是有:

{m1=0(m2+m2)=0 { m − 1 = 0 − ( m 2 + m − 2 ) = 0

解得 m=1 m = 1
因为 z1>z2¯¯¯¯¯ z 1 > z 2 ¯ ,所以 m3<2m5 m − 3 < 2 m − 5 ,也就是 m<2 m < 2 .
m=1 m = 1 适合 m<2 m < 2

  • 8
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值