裴蜀等式及其扩展
裴蜀等式是
exgcd
的骨髓,是建立在
gcd
,它保证了
exgcd
的有解性。
裴蜀等式
存在让
ax+by=gcd(a,b)
的
x,y
;
扩展
gcd(a,b)
是
{ax+by:x,y∈Z}
的最小正元素。
证明
先设
s
是这个集合中最小正元素。
设
由带余除法我们可以知道会有
amods=a−qs
因为
s
是那个集合中的元素,所以一定可以表示成
∴原式=a−q(ax+by)=a(1−qx)+b(−qy)
显而易见,我们发现
amods
被我们表示成
ax+by
的形式,其中
x=(1−qx)
,
y=−qy
。都是整数,符合要求。
因此
amods
也是这个集合中的一个元素。
因为任意数对一个数取模,结果肯定小于那个模数,也就是
0≤amods<s
,而前面我们又令
s
是最小正元素,所以
同样的,我们可以证明
s
能够被
∴
我们可以知道
s
是
又因为,
所以
gcd(a,b)=s
∴得证