题目描述
你的老家在农村。过年时,你回老家去拜年。你家有一片
N×M
N×M
农田,将其看成一个
N×M
N×M
的方格矩阵,有些方格是一片水域。你的农村伯伯听说你是学计算机的,给你出了一道题: 他问你:这片农田总共包含了多少个不存在水域的正方形农田。
两个正方形农田不同必须至少包含下面的两个条件中的一条:
边长不相等
左上角的方格不是同一方格
输入格式
输入数据第一行为两个由空格分开的正整数N、M(1<=m< n <=1000)
第2行到第N+1行每行有M个数字(0或1),描述了这一片农田。0表示这个方格为水域,否则为农田(注意:数字之间没有空格,而且每行不会出现空格)
输出格式
满足条件的正方形农田个数。
题解
这道二维DP涉及比较多的变量。
f[i][j]
f
[
i
]
[
j
]
代表是强制以(i,j)为右下角的最大正方形农田的边长。(具体计算方法见“注意点2”)
然后我们可以统计出所有以i为边长的最大正方形农田的个数
c[i]
c
[
i
]
最后我们求出边长为i的正方形农田个数
dp[i]
d
p
[
i
]
,所以我们有
dp[i]=dp[i+1]+c[i]
d
p
[
i
]
=
d
p
[
i
+
1
]
+
c
[
i
]
那么答案就是
∑ni=1dp[i]
∑
i
=
1
n
d
p
[
i
]
注意点1
我是用字符串形式来读入原图的。所以每一个元素都是字符。原图就是’0’和’1’的集合。所以判断原图某个点是农田还是水的时候,应该这样写: mp[i][j]==′1′ m p [ i ] [ j ] = = ′ 1 ′ 而不是 mp[i][j]==1 m p [ i ] [ j ] == 1 。。
注意点2
计算f[i][j]的时候的状态转移方程是:
而不是
我们只需要来证明,f[i][j]是前面的最小值决定的而不是最大值决定的。
我们可以分情况讨论:
先来反证肯定不是由最大值决定:
这里,f[3][4]=2,f[4][3]=2,f[3][3]=1.
明显f[4][4]=2而不是3。
f[i][j]由f[i-1][j-1]转移来
有
f[i−1][j−1]<=f[i−1][j]
f
[
i
−
1
]
[
j
−
1
]
<=
f
[
i
−
1
]
[
j
]
而且
f[i−1][j−1]<=f[i][j−1]
f
[
i
−
1
]
[
j
−
1
]
<=
f
[
i
]
[
j
−
1
]
就是这张图的情况,很明显是正确的。
f[i][j]由f[i][j-1]或者f[i-1][j]转移来
我们讨论
f[i−1][j]
f
[
i
−
1
]
[
j
]
的情况
明显有
f[i−1][j]<=f[i−1][j−1]
f
[
i
−
1
]
[
j
]
<=
f
[
i
−
1
]
[
j
−
1
]
那么我们也可以画图:
由于
f[i−1][j]<=f[i−1][j−1]
f
[
i
−
1
]
[
j
]
<=
f
[
i
−
1
]
[
j
−
1
]
,那么
f[i−1][j−1]
f
[
i
−
1
]
[
j
−
1
]
所代表的正方形,一定能满足转移需要。
code
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int num=0;
char c=' ';
bool flag=true;
for(;c>'9'||c<'0';c=getchar())
if(c=='-')
flag=false;
for(;c>='0'&&c<='9';num=num*10+c-48,c=getchar());
return flag ? num : -num;
}
const int maxn=1020;
int n,m;
char mp[maxn][maxn];
void init(){
n=read();m=read();
for(int i=1;i<=n;i++)
scanf("%s",mp[i]+1);
}
int f[maxn][maxn];
int c[maxn];
int largest;
void DP1(){
const int INF=2e9;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(mp[i][j]=='1'){
f[i][j]=INF;
f[i][j]=min(f[i][j],f[i-1][j]+1);
f[i][j]=min(f[i][j],f[i][j-1]+1);
f[i][j]=min(f[i][j],f[i-1][j-1]+1);
c[f[i][j]]++;
largest=max(largest,f[i][j]);
}
else f[i][j]=0;
}
}
}
int dp[maxn];
void DP2(){
int ans=0;
for(int i=largest;i>=1;i--)
if(c[i]!=0){
dp[i]=dp[i+1]+c[i];
ans+=dp[i];
}
printf("%d\n",ans);
}
void check(){
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
cout<<f[i][j]<<' ';
cout<<endl;
}
}
int main(){
init();
DP1();
DP2();
//check();
return 0;
}