Spark求平均值

本文介绍了使用Spark计算平均值的三种方法:groupByKey、combineByKey和reduceByKey。分别讨论了它们的可读性、线程安全性和推荐使用情况。最后提到了通过Spark SQL进行聚合操作的选项。
摘要由CSDN通过智能技术生成

        //求平均 方法一: groupByKey
        textFile.mapToPair(line -> new Tuple2<>(line.split(" ")[0], Integer.parseInt(line.split(" ")[1])))
                .groupByKey()
                .mapToPair(info -> {
                    double sum = 0;
                    double count = 0;
                    Iterator<Integer> it = info._2().iterator();
                    while (it.hasNext()) {
                        sum += it.next();
                        count++;
                    }
                    double ave = sum / count;
                    return new Tuple2<>(info._1(), ave);
                })
                .collect()
                .forEach(System.out::println);

//求平均 方法二: combineByKey
        textFile.mapToPair(line -> new Tuple2<>(line.split(" ")[0], Int

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值