spark更加高效的求平均数

今天看书看到了mapPartitions,体会了一下分区操作。

package com.cnnc.sparkLearning

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object test {
  def main(args: Array[String]): Unit = {
    case class Person(name:String,sex:String)
    val conf = new SparkConf().setMaster("local").setAppName("test")
    val sc = new SparkContext(conf)
    val rdd: RDD[Int] = sc.parallelize(List(1,2,3,4,4,5),2)
    def partitionCrr(s:scala.Iterator[Int]) ={
      val temp = Array(0,0)
      while (s.hasNext){
        val i: Int = s.next()
        temp(0)+=i
        temp(1)+=1
      }
      Iterator(Tuple2(temp(0),temp(1)))//要求返回对象的迭代器
    }
    val tuple: (Int, Int) = rdd.mapPartitions(partitionCrr).reduce((a,b)=>(a._1+b._1,a._2+b._2))
    println(tuple._1/tuple._2.toDouble)
  }
}

以往的求和我们会将数字转成一个二元组,第一位放数字,第二位放1(便于累加求数字个数总和),但是这样操作会对每一个数字创建一个二元组。
然而mapPartitions就是为了避免创建过多的对象,上述代码中,在每个分区中只创建了一个Array(0,0),相比之前创建6个二元组要节省一些内存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值