解法一:
转化为01背包问题,直接把k个物品放置k次即可。
#include <bits/stdc++.h>
using namespace std;
int main()
{
int N, W;
scanf("%d %d", &N, &W);
int dp[W+1];
memset(dp, 0, sizeof(dp));
for(int i=0;i<N;i++)
{
int v, w, s;
scanf("%d %d %d", &w, &v, &s);
for(int t=0;t<s;t++)
{
for (int j = W; j >= w; j--)
{
dp[j] = max(dp[j], dp[j - w] + v);
}
}
}
printf("%d\n", dp[W]);
}
解法二:二进制优化
如果要放置n件物品,它的所有的二进制组合就能表示所有的数。比如给定一个6,我们可以表示为1,2,3,如果是13,表示为1,2,4,6. 最后一个可能不是2的指数。
在第一个例子中,我们可以发现,1-6任何数字都可以通过选择1,2,3中的任意数字来满足。第二个例子也一样。因此,我们可以把放置次数换为最多32次(假设k为int)
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
typedef pair<int, int> P;
int INF = 1 << 30;
int main()
{
int N, W;
scanf("%d %d", &N, &W);
int dp[W+1];
memset(dp, 0, sizeof(dp));
for(int i=0;i<N;i++)
{
int v, w, s;
scanf("%d %d %d", &w, &v, &s);
for(int t=1;s>0;t*=2)
{
int mul = min(s, t);
for (int j = W; j >= w*mul; j--)
{
dp[j] = max(dp[j], dp[j - w*mul] + v*mul);
}
s -= t;
}
}
printf("%d\n", dp[W]);
}
}