多重背包问题

解法一:
转化为01背包问题,直接把k个物品放置k次即可。

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int N, W;
    scanf("%d %d", &N, &W);
    int dp[W+1];
    memset(dp, 0, sizeof(dp));
    for(int i=0;i<N;i++)
    {
        int v, w, s;
        scanf("%d %d %d", &w, &v, &s);
        for(int t=0;t<s;t++)
        {
            for (int j = W; j >= w; j--)
            {
                dp[j] = max(dp[j], dp[j - w] + v);
            }
        }
    }
    printf("%d\n", dp[W]);
}

解法二:二进制优化
如果要放置n件物品,它的所有的二进制组合就能表示所有的数。比如给定一个6,我们可以表示为1,2,3,如果是13,表示为1,2,4,6. 最后一个可能不是2的指数。
在第一个例子中,我们可以发现,1-6任何数字都可以通过选择1,2,3中的任意数字来满足。第二个例子也一样。因此,我们可以把放置次数换为最多32次(假设k为int)

#include <bits/stdc++.h>

typedef long long ll;
using namespace std;

typedef pair<int, int> P;
int INF = 1 << 30;
int main()
{
    int N, W;
    scanf("%d %d", &N, &W);
    int dp[W+1];
    memset(dp, 0, sizeof(dp));
    for(int i=0;i<N;i++)
    {
        int v, w, s;
        scanf("%d %d %d", &w, &v, &s);
        for(int t=1;s>0;t*=2)
        {
            int mul = min(s, t);
            for (int j = W; j >= w*mul; j--)
            {
                dp[j] = max(dp[j], dp[j - w*mul] + v*mul);
            }
            s -= t;
        }
    }
    printf("%d\n", dp[W]);
}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值