Redis、MySQL、hive、hbase的区别以及数据库及数据仓库的比较

Redis、MySQL、hive、hbase的区别

redis:分布式缓存,强调缓存,基于内存,支持数据持久化,支持事务操作
传统数据库:注重关系,注重事务性
hbase:列式数据库,字典查询,稀疏性存储,无法做关系数据库的主外键,用于存储海量数据,底层基于hdfs
hive:数据仓库工具,底层是mapreduce。不是数据库,不能用来做用户的交互存储
HBase和Redis都是基于Key、Value的数据库。

增、删、改、查、 库、表的概念在hbase 和hive 中 哪些有哪些没有?

虽然Hive提供了SQL查询功能,但是Hive不能够进行交互查询–因为它只能够在Haoop上批量的执行Hadoop,Hive中有增、查、库、表的概念。
Hbase的能够在它的数据库上实时运行,Hbase中有增删、改、查、表的概念。

数据库和数据仓库的区别

数据仓库:分析型处理

是为了企业所有级别的决策制定计划过程,提供所有类型数据类型的战略集合。它出于分析性报告和决策支持的目的而创建。
数据仓库是面向主题的;
数据是随着时间的变化而变化的;
数据仓库的数据是不可修改的。 数据仓库的数据主要提供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。
属于读模式:在数据查询时会进行检查
hive数据仓库可理解为hdfs的一个数据管理工具

数据库:操作型处理

支持事务性操作,属于写模式,即写入数据时进行检查
它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。

MySQL是一种关系型数据库,用于存储结构化数据。它使用SQL语言来管理和操作数据,支持多种数据类型,包括数字、字符串、日期、时间等等。MySQL最常用于Web应用程序,例如内容管理系统(CMS)、博客、电子商务网站等。 Hive是一种基于Hadoop的数据仓库,它使用SQL类似的查询语言来查询和分析大规模的数据集。Hive将查询转换为MapReduce任务,以便在Hadoop集群上并行执行。Hive支持多种数据格式,包括文本、序列化、ORC等。 Kafka是一个高吞吐量的分布式消息系统。它使用发布/订阅模式,可以处理大量的实时数据流,例如日志、传感器数据等。Kafka具有高可用性、可扩展性和可靠性。 Redis是一种内存数据库,用于存储和管理键值对。它支持多种数据结构,例如字符串、哈希表、列表、集合等。Redis非常快速,可用于缓存数据、会话管理、队列等。 ES(Elasticsearch)是一种开源搜索引擎,用于全文搜索和分析。它可以处理大量数据、支持实时查询和聚合,并提供可视化的仪表板。ES使用分布式架构,可以在多个节点上进行水平扩展。 HBase是一个分布式的NoSQL数据库,用于存储大规模的结构化数据。它运行在Hadoop上,可以在大规模集群上进行水平扩展。HBase支持随机读写、批量操作和事务处理等功能。 以上是这些数据存储相关技术的简单介绍。在实际应用中,需要根据具体的场景和需求选择合适的技术来存储和管理数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值