题目:
假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。
①下面所示的序列中哪些是合法的?
A. IOIIOIOO B. IOOIOIIO C. IIIOIOIO D. IIIOOIOO
②通过对①的分析,写出一个算法,判定所给的操作序列是否合法。若合法,返回TRUE,否则返回ERROR。
分析:
①. A、D是合法序列;B、C是非法序列。
对于B队列,先入栈一次,再连续出栈两次,因为第一次出栈后栈就空了,无法再次出栈,错误。
对于C队列,入栈一共5次,出栈只有3次,导致最终栈不为空,错误。
②.
算法思想:对一个指定的序列进行入栈操作,每扫描到任意位置需要检验出栈次数是否小于入栈次数(即O的个数是否小于I的个数),如果大于则是非法序列。扫描结束后判断出栈次数是否等于入栈次数(即O的个数是否等于I的个数),如果不相等,则为非法序列。否则为合法序列。
算法描述:
Status JudgeSequence(Stack &S){
int i=j=k=0;//i表示栈中第i+1个字符,j表示入栈次数;k表示出栈次数
while(S.data[i]!='\O'){
switch(S.data[i]){
case 'I':j++; //入栈次数加1
break;
case 'O':k++; //出栈次数加1
if(k>j){ //比较入栈和出栈次数,若出栈次数大于入栈次数,则是非法序列。
return ERROR;
}
break;
}
i++;
}
if(j!=k){ //入栈次数和出栈次数不同
return ERROR;
}else{
return TRUE;
}
}