跨设备的模型保存和加载

  1. GPU保存,CPU加载

             

PATH = './model.pth'
torch.save(model.state_dict(), PATH)
device = torch.device('cpu')
model = Net()
model.load_state_dict(torch.load(PATH, map_location=device))

         

     2.保存在GPU 上,在 GPU 上加载

device = torch.device("cuda")
model = Net()
model.load_state_dict(torch.load(PATH))
model.to(device)

3.保存 CPU 上,在 GPU 上加载

device = torch.device("cuda")
model = Net()
model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  # 选择哪个GPU
model.to(device)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值