机器学习4——学习率

本文探讨了网络训练中学习率调整的重要性,包括Apagrad、RMSProp和Adam等方法。Apagrad根据梯度方向动态调整学习率,RMSProp通过控制α调整学习率,而Adam结合了RMSProp和动量策略。此外,还提到了学习率衰减和warmup策略,以避免训练过程中的震荡和优化性能。
摘要由CSDN通过智能技术生成

自动调节学习率

  • 在网络训练中不同的参数需要不同的学习率,如果对学习率不做任何调整可能在很大程度上都难以找到最优的解。如图所示
    在这里插入图片描述
    因此有了如下三种方法来调整学习率

1. Apagrad方法

在平的方向需要学习率大一些,走的快一点。在一些陡的方向需要Lr小一些。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
越陡g越大,lr越小,走的越慢。

然而,在同参数同方向上有时也需要不同的学习率,如图所示。
在这里插入图片描述
为此提出了RMSProp的方法

2. 在这里插入图片描述

  • 通过控制α的大小来动态的调整学习率,α越大学习率就越小,前进的距离就小,α越小前进的距离就越大。
    在这里插入图片描述

3.Adam方法

Adam方法就是结合了 RMSprop 和 动量(Momentum)。

在这里插入图片描述

4.其他辅助方法

4.1 通过使学习率不断衰减

在这里插入图片描述
如不使用学习率衰减的方法,只使用Apagrad的方法,可能就会出现如上图所示的内容,当δ逐渐变小积累到一定程度就会发生振荡。
在这里插入图片描述

因此让学习率随时间的不断增加,让其值逐渐变小。

在这里插入图片描述

4.2 warm up

在这里插入图片描述
warm up的方法有用在 Resnet和transform等网络中。

在这里插入图片描述

5 总结

在这里插入图片描述
m:动量考虑方向正负号等。
δ:只考虑值的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值