RK3576部署测试mobilenet

  1. 下载rockchip的官方工具包
    https://github.com/airockchip/rknn-toolkit2
    在这里插入图片描述
    这里使用的v2.1.0版本

RKNN 软件栈可以帮助用户快速将 AI 模型部署到 Rockchip 芯片上。总体框架如下:
在这里插入图片描述
下载之后的目录结构如下:
在这里插入图片描述

RKNN-Toolkit2 是一款软件开发套件,供用户在 PC 和 Rockchip NPU 平台上进行模型转换、推理和性能评估。

RKNN-Toolkit-Lite2 为 Rockchip NPU 平台提供 Python 编程接口,帮助用户部署 RKNN 模型,加速 AI 应用的落地。

RKNN Runtime 为 Rockchip NPU 平台提供 C/C++ 编程接口,帮助用户部署 RKNN 模型,加速 AI 应用的落地。

RKNPU 内核驱动负责与 NPU 硬件交互。

打开rknpu2/examples/rknn_mobilenet_demo
导入交叉编译环境,然后编译执行。
这里我是将所需的文件放在一起的,如下:
在这里插入图片描述
mobilenet_demo.cpp所涉及的流程有:

 预处理图片
 初始化RKNN模型
 获取模型输入输出信息
输入输出数量(主要用于遍历次数、定位输入)
输入输出属性(主要确定网络输入大小,输出格式等信息)
 设置模型
主要设置模型输入的类型、数据指针、大小等信息
 运行RKNN
 获取模型输出
 后处理
 释放资源

然后进行编译,最终执行。
执行结果如下:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值