- 下载rockchip的官方工具包
https://github.com/airockchip/rknn-toolkit2
这里使用的v2.1.0版本
RKNN 软件栈可以帮助用户快速将 AI 模型部署到 Rockchip 芯片上。总体框架如下:
下载之后的目录结构如下:
RKNN-Toolkit2 是一款软件开发套件,供用户在 PC 和 Rockchip NPU 平台上进行模型转换、推理和性能评估。
RKNN-Toolkit-Lite2 为 Rockchip NPU 平台提供 Python 编程接口,帮助用户部署 RKNN 模型,加速 AI 应用的落地。
RKNN Runtime 为 Rockchip NPU 平台提供 C/C++ 编程接口,帮助用户部署 RKNN 模型,加速 AI 应用的落地。
RKNPU 内核驱动负责与 NPU 硬件交互。
打开rknpu2/examples/rknn_mobilenet_demo
导入交叉编译环境,然后编译执行。
这里我是将所需的文件放在一起的,如下:
mobilenet_demo.cpp所涉及的流程有:
预处理图片
初始化RKNN模型
获取模型输入输出信息
输入输出数量(主要用于遍历次数、定位输入)
输入输出属性(主要确定网络输入大小,输出格式等信息)
设置模型
主要设置模型输入的类型、数据指针、大小等信息
运行RKNN
获取模型输出
后处理
释放资源
然后进行编译,最终执行。
执行结果如下: