Pytorch使用手册--使用WAV2VEC2进行语音识别(专题二十三)

本教程展示了如何使用来自 wav2vec 2.0 [论文] 的预训练模型进行语音识别。

1. 概述

语音识别的过程如下所示:

  1. 从音频波形中提取声学特征
  2. 逐帧估计声学特征的类别
  3. 根据类别概率序列生成假设

Torchaudio 提供了便捷的访问预训练权重及相关信息的方式,例如预期的采样率和类别标签。这些信息被打包在一起,并可通过 torchaudio.pipelines 模块获取。

2. 准备工作

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__ve
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无声之钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值