CUDA专题11—告别内存等待:深度解析CUDA同步域的原理与实战

1. 内存同步域

1.1. 内存栅栏干扰

部分CUDA应用程序可能因内存栅栏/刷新操作需等待超出CUDA内存一致性模型要求范围的内存事务,从而导致性能下降。
在这里插入图片描述
以观察上述示例。根据CUDA内存一致性模型的保证,断言条件必然成立,这意味着线程1对变量x的写入必须在线程2对b的写入之前,对线程3可见。

通过原子变量a的release-acquire操作所提供的内存序仅能确保x对线程2可见(因其作用域限于设备内部),而无法保证对线程3的可见性。因此,原子变量b通过系统级作用域(system-scope)的release-acquire内存序,不仅需要确保线程2自身的写入对线程3可见,还必须保证那些已对线程2可见的其他线程写入也能被线程3观测到——这一特性被称为"累积性(cumulativity)"。由于GPU在执行时无法区分哪些写入在源码层面已被严格同步、哪些仅因时序巧合而可见,它必须采取保守策略,广泛捕获所有执行中的内存操作。

这种机制有时会导致干扰现象:由于GPU需要等待一些在源码层面本无需等待的内存操作,使得栅栏/刷新操作的执行时间可能超出必要时长。

需特别说明的是,内存栅栏既可能显式地表现为代码中的原子操作或内在函数(如示例所示),也可能隐式地作用于任务边界处,用于实现"同步于(synchronizes-with)"关系。

典型场景是:当一个内核正在本地GPU内存执行计算时,另一个并行内核

【基于DQN和PyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQN和PyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现法训练仿真,优化无人机作为空中基站时的用户接入策略,提升通信网络的覆盖效率资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性优越性。; 适合人群:具备一定深度学习和强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制奖励函数设计,同时可扩展至更复杂的动态环境大规模网络场景中进行验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI专题精讲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值