【专题学习】Contiguity(进行中)

需要学一下Contiguity,做个体系化的笔记,水平有限,欢迎批评指正。

J. Oosterhoff & W. R. Van Zwet的讲义

符号

  • ( X n 1 , A n 1 ) , … , ( X n n , A n n ) \left(\mathscr{X}_{n 1}, \mathscr{A}_{n 1}\right), \ldots,\left(\mathscr{X}_{n n}, \mathscr{A}_{n n}\right) (Xn1,An1),,(Xnn,Ann):测度空间

  • P n ( n ) = ∏ i = 1 n P n i P_n^{(n)}=\prod_{i=1}^nP_{ni} Pn(n)=i=1nPni,

  • Q n ( n ) = ∏ i = 1 n Q n i Q_n^{(n)}=\prod_{i=1}^nQ_{ni} Qn(n)=i=1nQni:乘积概率测度

  • X n i X_{ni} Xni:从 X n i \mathscr{X}_{ni} Xni打到 X n i \mathscr{X}_{ni} Xni的单位映射

  • P n i , Q n i P_{ni}, Q_{ni} Pni,Qni ( X n i , A n i ) \left(\mathscr{X}_{ni}, \mathscr{A}_{ni}\right) (Xni,Ani) X n i X_{ni} Xni的分布, i = 1 , , . . . , n i=1,,...,n i=1,,...,n
    这里 X n 1 , . . . , X n n X_{n1},...,X_{nn} Xn1,...,Xnn P n ( n ) P_n^{(n)} Pn(n) Q n ( n ) Q_n^{(n)} Qn(n)下皆独立。

定义

  • { Q n ( n ) } \{Q_n^{(n)}\} { Qn(n)}关于 { P n ( n ) } \{P_n^{(n)}\} { Pn(n)}邻接( { Q n ( n ) } \{Q_n^{(n)}\} { Qn(n)} is contiguous w.r.t { P n ( n ) } \{P_n^{(n)}\} { Pn(n)}):若 lim ⁡ n → ∞ P n ( n ) ( A n ) = 0 \lim _{n \rightarrow \infty} P_{n}^{(n)}\left(A_{n}\right)=0 limnPn(n)(An)=0 可推出 lim ⁡ n → ∞ Q n ( n ) ( A n ) = 0 \lim _{n \rightarrow \infty} Q_{n}^{(n)}\left(A_{n}\right)=0 limnQn(n)(An)=0;记为 { Q n ( n ) } ◃ { P n ( n ) } \left\{Q_{n}^{(n)}\right\} \triangleleft\left\{P_{n}^{(n)}\right\} { Qn(n)}{ Pn(n)}
  • Hellinger距离: H ( P , Q ) = { ∫ ( p 1 / 2 − q 1 / 2 ) 2   d μ } 1 / 2 = { 2 − 2 ∫ p 1 / 2 q 1 / 2   d μ } 1 / 2 H(P,Q)=\left\{\int\left(p^{1 / 2}-q^{1 / 2}\right)^{2} \mathrm{~d} \mu\right\}^{1 / 2}=\left\{2-2 \int p^{1 / 2} q^{1 / 2} \mathrm{~d} \mu\right\}^{1 / 2} H(P,Q)={ (p1/2q1/2)2 dμ}1/2={ 22p1/2q1/2 dμ}1/2,这里 p = d P / d μ , q = d Q / d μ p=\mathrm{d} P / \mathrm{d} \mu, q=\mathrm{d} Q / \mathrm{d} \mu p=dP/dμ,q=dQ/dμ μ > > P + Q \mu>>P+Q μ>>P+Q σ − \sigma- σ有限测度
  • Hellinger距离(乘积空间上) H 2 ( P n ( n ) , Q n ( n ) ) = 2 − 2 ∏ i = 1 n { 1 − 1 2 H 2 ( P n i , Q n i ) } H^{2}\left(P_{n}^{(n)}, Q_{n}^{(n)}\right)=2-2 \prod_{i=1}^{n}\left\{1-\frac{1}{2} H^{2}\left(P_{n i}, Q_{n i}\right)\right\} H2(Pn(n),Qn(n))=22i=1n{ 121H2(Pni,Qni)}
  • 全变差距离(total variation distance): ∥ P − Q ∥ = sup ⁡ A ∣ P ( A ) − Q ( A ) ∣ \|P-Q\|=\sup_{A} |P(A)-Q(A)| PQ=supAP(A)Q(A),要求 A A A可测。这里全变差带来的是关键方法: ∥ P n ( n ) − Q n ( n ) ∥ = o ( 1 ) ⇒ { P n ( n ) } ◃ ▹ { Q n ( n ) } \left\|P_{n}^{(n)}-Q_{n}^{(n)}\right\|=o(1) \Rightarrow\left\{P_{n}^{(n)}\right\} \triangleleft \triangleright\left\{Q_{n}^{(n)}\right\} Pn(n)Qn(n)=o(1){ Pn(n)}{ Qn(n)}
  • Λ n = ∑ i = 1 n log ⁡ { q n i ( X n i ) / p n i ( X n i ) } \Lambda_{n}=\sum_{i=1}^{n} \log \left\{q_{n i}\left(X_{n i}\right) / p_{n i}\left(X_{n i}\right)\right\} Λn=i=1nlog{ qni(Xni)/pni(Xni)}

基本性质

  • 0 ≦ H ( P , Q ) ≦ 2 1 / 2 0 \leqq H(P, Q) \leqq 2^{1 / 2} 0H(P,Q)21/2:显然
  • ∥ P − Q ∥ = 1 2 ∫ ∣ p − q ∣ \|P-Q\|=\frac{1}{2}\int|p-q| PQ=21pq:令 A = { p > q } A=\{p>q\} A={ p>q}
  • 1 2 H 2 ( P , Q ) ≦ ∥ P − Q ∥ ≦ H ( P , Q ) \frac{1}{2} H^{2}(P, Q) \leqq\|P-Q\| \leqq H(P, Q) 21H2(P,Q)PQH(P,Q)
    计算方法: 1 2 H 2 ( P , Q ) = ∫ ( p 1 / 2 − q 1 / 2 ) 2   d μ ≤ ∫ ∣ p 1 / 2 − q 1 / 2 ∣ ∣ p 1 / 2 + q 1 / 2 ∣   d μ = ∥ P − Q ∥ ≦ H ( P , Q ) \frac{1}{2}H^2(P,Q)=\int\left(p^{1 / 2}-q^{1 / 2}\right)^{2} \mathrm{~d} \mu\leq\int\left|p^{1 / 2}-q^{1 / 2}\right|\left|p^{1 / 2}+q^{1 / 2}\right| \mathrm{~d} \mu=\|P-Q\| \leqq H(P, Q) 21H2(P,Q)=(p1/2q1/2)2 dμp1/2q1/2p1/2+q1/2 dμ=PQH(P,Q)(Holder不等式)
  • ∑ i = 1 n H 2 ( P n i , Q n i ) = o ( 1 ) \sum_{i=1}^{n} H^{2}\left(P_{n i}, Q_{n i}\right)=o(1) i=1nH2(Pni,Qni)=o(1) for n → ∞ ⇒ { P n ( n ) } ◃ ▹ { Q n ( n ) } n \rightarrow \infty \Rightarrow\left\{P_{n}^{(n)}\right\} \triangleleft \triangleright\left\{Q_{n}^{(n)}\right\} n{ Pn(n)}{ Qn(n)}
    证明: ∑ i = 1 n H 2 ( P n i , Q n i ) = o ( 1 ) ⇒ ∑ i = 1 n log ⁡ { 1 − 1 2 H 2 ( P n i , Q n i ) } = o ( 1 ) \sum_{i=1}^{n} H^{2}\left(P_{n i}, Q_{n i}\right)=o(1) \Rightarrow \sum_{i=1}^{n} \log \left\{1-\frac{1}{2} H^{2}\left(P_{n i}, Q_{n i}\right)\right\}=o(1) i=1nH2(Pni,Qni)=o(1)i=1nlog{ 121H2(Pni,Qni)}=o(1)
    ⇒ H 2 ( P n ( n ) , Q n ( n ) ) = o ( 1 ) ⇒ ∥ P n ( n ) − Q n ( n ) ∥ = o ( 1 ) ( 通 过 不 等 式 ) ⇒ { P n ( n ) } ◃ ▹ { Q n ( n ) } \Rightarrow H^{2}\left(P_{n}^{(n)}, Q_{n}^{(n)}\right)=o(1) \Rightarrow\left\|P_{n}^{(n)}-Q_{n}^{(n)}\right\|=o(1) (通过不等式)\Rightarrow \left\{P_{n}^{(n)}\right\} \triangleleft \triangleright\left\{Q_{n}^{(n)}\right\} H2(Pn(n),Qn(n))=o(1)Pn(n)Qn(n)=o(1){ Pn(n)}{ Qn(n)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值