Convergence of probability measure P. Billingsley 笔记:Chapter 1-12 (正在进行中)

自学记录+对自己的一种督促,把学习理论统计知识的过程和思路进行一个分享,现在是本书的第一遍自学,还会有第二遍及补充的总结内容,这里献丑了。希望能帮到各位需要的朋友。本人水平有限,写的不对的地方请指出,谢谢!

第一章:测度,紧性

符号:

S S S: 度量空间
S \mathcal{S} S: Borel σ − \sigma- σ代数
ρ ( , . , ) \rho(,.,) ρ(,.,): 距离
P f = ∫ S f d P Pf=\int_SfdP Pf=SfdP
uniform metric: ρ ( x , y ) = ∣ ∣ x − y ∣ ∣ = sup ⁡ x ∣ x ( t ) − y ( t ) ∣ \rho(x,y)=||x-y||=\sup_x|x(t)-y(t)| ρ(x,y)=xy=supxx(t)y(t)

定义:

1.1 弱收敛 weakly convergence:

P n f → P f P_nf\rightarrow Pf PnfPf对任意在S上的有界连续函数成立,记作 P n ⇒ P P_n\Rightarrow P PnP.

1.2 可分空间(Separable):

包含可数稠密子集

1.3 完全空间(Complete):

满足cauchy收敛性的空间

1.4 紧测度(Tight)

对于任意 ϵ \epsilon ϵ, 存在紧集 K K K s.t. P ( K ) > 1 − ϵ P(K)>1-\epsilon P(K)>1ϵ

知识体系/定理

Thm 1.1. 概率测度完全由其闭集上的测度决定

任意在 ( S , S ) (S,\mathcal{S}) (S,S)上的概率测度 P P P都满足:对任意 S − \mathcal{S}- S集合A和任意 ϵ \epsilon ϵ, 存在闭集 F F F和开集 G G G,满足 F ⊂ A ⊂ G F \subset A \subset G FAG P ( G − F ) < ϵ P(G-F)<\epsilon P(GF)<ϵ
证明思路: 可直接用外测度,引出对集合A的L-覆盖(可数开矩体覆盖) { I k } \{I_k\} { Ik}, s.t. ∑ i = 1 ∞ ∣ I k ∣ < m ( E ) + ϵ / 2 \sum_{i=1}^{\infty}|I_k|<m(E)+\epsilon/2 i=1Ik<m(E)+ϵ/2,故取开集 G = ⋃ i = 1 ∞ I k G=\bigcup_{i=1}^{\infty} I_k G=i=1Ik。对于 A c A^c Ac,进行相同操作再取补即可。
相关:对于闭集 F F F,可用来考虑逼近用的3个‘距离’函数:
I F ( x ) I_F(x) IF(x)
I F ϵ ( x ) I_{F^{\epsilon}}(x) IFϵ(x): F ϵ = { x : ρ ( x , A ) < ϵ } F^{\epsilon}=\{x:\rho(x,A)<\epsilon \} Fϵ={ x:ρ(x,A)<ϵ};
f = ( 1 − ρ ( x , F ) / ϵ ) + f=(1-\rho(x,F)/\epsilon)^+ f=(1ρ(x,F)/ϵ)+
我们有: I F ( x ) ≤ f ( x ) ≤ I F ϵ ( x ) I_F(x)\leq f(x)\leq I_{F^{\epsilon}}(x) IF(x)f(x)IFϵ(x)

Thm 1.2 处理 P P P等同于处理 P ( A ) P(A) P(A)等同于处理 P f Pf Pf

如果 S \mathcal{S} S上的概率测度 P P P Q Q Q满足: P f = Q f Pf=Qf Pf=Qf对一切有界一致连续函数 f f f成立,则 P = Q P=Q P=Q.
证明思路 P I F ≤ P f = Q f ≤ Q I F ϵ P_{I_F}\leq Pf=Qf \leq Q_{I_{F^{\epsilon}}} PIFPf=QfQIFϵ, Q I F ≤ Q f = P f ≤ P I F ϵ Q_{I_F}\leq Qf=Pf \leq P_{I_{F^{\epsilon}}} QIFQf=PfPIFϵ,再令 ϵ → 0 \epsilon\rightarrow 0 ϵ0即可。

Thm 1.3. 对于完全可分空间 S S S,每个其上的概率测度皆紧

证明思路:对任意 k k k, 有 1 / k 1/k 1/k开球覆盖S( A k 1 , A k 2 , . . . A_{k1},A_{k2},... Ak1,Ak2,...), 可找到 n k n_k nk s.t. P ( ⋃ i ≤ n k A k i ) > 1 − ϵ / 2 k P\left(\bigcup_{i \leq n_{k}} A_{k i}\right)>1-\epsilon / 2^{k} P(inkAki)>1ϵ/2k ⋂ k ≥ 1 ⋃ i ≤ n k A k i \bigcap_{k \geq 1} \bigcup_{i \leq n_{k}} A_{k i} k1inkAki有紧闭包 K K K. P ( K ) > 1 − ϵ P(K)>1-\epsilon P(K)>1ϵ

第二章:弱收敛的性质

符号

D h D_h Dh h h h的不连续点集

定义

P − P- P连续集A P ( ∂ A ) P(\partial A) P(A)满足 P ( ∂ A ) = 0 P(\partial A)=0 P(A)=0
收敛决定类 A \mathcal{A} A(convergence-determining class):对 A \mathcal{A} A中集合 A A A, P n ( A ) → P ( A ) P_n(A)\rightarrow P(A) Pn(A)P(A)可推出 P n ⇒ P P_n\Rightarrow P PnP【即刻画概率测度的收敛】

知识体系/定理

Portmanteau Thm (一部分特征的收敛刻画整个的收敛)

以下等价:
(i) P n ⇒ P P_{n} \Rightarrow P PnP.
(ii) P n f → P f P_{n} f \rightarrow P f PnfPf对所有有界、一致连续函数 f f f成立.
(iii) lim ⁡ sup ⁡ n P n F ≤ P F \lim \sup _{n} P_{n} F \leq P F limsupnPnFPF 对所有闭集 F F F成立.
(iv) lim inf ⁡ n P n G ≥ P G \liminf _{n} P_{n} G \geq P G nliminfPnGPG 对所有开集 G G G成立.
(v) P n A → P A P_{n} A \rightarrow P A PnAPA 对所有 P P P-连续集 A A A成立.
证明思路:(i) → \rightarrow (ii): 定义
(ii) → \rightarrow (iii):对于 f = ( 1 − ρ ( x , F ) / ϵ ) + f=(1-\rho(x,F)/\epsilon)^+ f=(1ρ(x,F)/ϵ)+,仍然借助闭集逼近的办法: lim ⁡ sup ⁡ n P n F ≤ lim ⁡ sup ⁡ n P n f = P f ≤ P F ϵ \lim \sup _{n} P_{n} F \leq \lim \sup _{n} P_{n} f=P f \leq P F^{\epsilon} limsupnPnFlimsupnPnf=PfPFϵ
(iii) → \rightarrow (iv):取补
(iii)+(iv) → \rightarrow (v):对 A A A的闭包 A − A^- A和内部 A ∘ A^{\circ} A,(iii)和(iv)可推得:
P ( A − ) ≥ lim ⁡ sup ⁡ n P n ( A − ) ≥ lim ⁡ sup ⁡ n P n ( A ) ≥ lim ⁡ inf ⁡ n P n ( A ) ≥ lim ⁡ inf ⁡ n P n ( A ∘ ) ≥ P ( A ∘ ) P(A^-)\geq\lim \sup _{n} P_{n}(A^-)\geq\lim \sup _{n} P_{n}(A)\geq\lim \inf _{n} P_{n}(A)\geq\lim \inf _{n} P_{n}(A^{\circ})\geq P(A^{\circ}) P(A)limnsupPn(A)limnsupPn(A)limninfPn(A)limninfPn(A)P(A)
因为 P ( ∂ A ) = 0 P(\partial A)=0 P(A)=0,(v)成立
(v) → \rightarrow (i)对于取值在[0,1]有界函数 f f f P f = ∫ 0 1 P [ f > t ] d t Pf=\int_0^1 P[f>t]dt Pf=01P[f>t]dt,同理 P n f = ∫ 0 1 P n [ f > t ] d t P_nf=\int_0^1 P_n[f>t]dt Pnf=01Pn[f>t]dt。因为 ∂ [ f > t ] ⊂ [ f = t ] \partial[f>t]\subset[f=t] [f>t][f=t] f f f连续,故 [ f > t ] [f>t] [f>t]为P-连续集a.s.;所以 P n [ f > t ] → P [ f > t ] P_n[f>t]\rightarrow P[f>t] Pn[f>t]P[f>t],由有界收敛定理可知(i)成立。

其他的特征

Thm2.2 满足集合可列可加性的 π − \pi- π A \mathcal{A} A是收敛决定类(对 A \mathcal{A} A中集合 A A A, P n ( A ) → P ( A ) P_n(A)\rightarrow P(A) Pn(A)P(A)可推出 P n ⇒ P P_n\Rightarrow P PnP

证明思路:开集 G = ⋃ i = 1 ∞ A i G=\bigcup_{i=1}^{\infty} A_i G=i=1Ai,可找到 n 0 n_0 n0,s.t. P ( ⋃ i = 1 n 0 A i ) > P ( G ) − ϵ P(\bigcup_{i=1}^{n_0} A_i)>P(G)-\epsilon P(i=1n0Ai)>P(G)ϵ。 其中 ⋃ i = 1 n 0 A i \bigcup_{i=1}^{n_0} A_i i=1n0Ai在每个 P n P_n Pn中可用容斥原理逼近,即 P n ( ⋃ i = 1 n 0 A i ) → P ( ⋃ i = 1 n 0 A i ) P_n(\bigcup_{i=1}^{n_0} A_i)\rightarrow P(\bigcup_{i=1}^{n_0} A_i) Pn(i=1n0Ai)P(i=1n0Ai)。所以 lim ⁡ inf ⁡ P n ( G ) ≥ lim ⁡ inf ⁡ P n ( ⋃ i = 1 n 0 A i ) ≥ P ( G ) − ϵ \lim \inf P_n(G) \geq \lim \inf P_n(\bigcup_{i=1}^{n_0} A_i)\geq P(G)-\epsilon liminfPn(G)liminfPn(i=1n0Ai)P(G)ϵ,根据 ϵ \epsilon ϵ的任意性,可由Thm2.1 (iv)得出结论。

Thm 2.3 度量空间可分,存在一个 π − \pi- π A \mathcal{A} A,其中总有足够小的开集包含在任意开球 B ( x , ϵ ) B(x,\epsilon) B(x,ϵ)中,则 A \mathcal{A} A是收敛决定类。

证明思路:度量空间可分性可召唤Lindelof性,即开集必有可数包含于 ϵ − \epsilon- ϵ开球的开覆盖,
此时thm2.2的条件得到满足。

Thm 2.4 度量空间可分,存在一个 π − \pi- π A \mathcal{A} A,其中对于任意开球 B ( x , ϵ ) B(x,\epsilon) B(x,ϵ),令 A x , ϵ \mathcal{A}_{x,\epsilon} Ax,ϵ表示 A \mathcal{A} A中满足 x ∈ A ∘ ⊂ A ⊂ B ( x , ϵ ) x \in A^{\circ} \subset A \subset B(x, \epsilon) xAAB(x,ϵ)的集类,若 ∂ A x , ϵ \partial \mathcal{A}_{x,\epsilon} Ax,ϵ(边界集类)要么包含空集,要么包含不可数个不交集,则 A \mathcal{A} A是收敛决定类。
证明思路:即满足条件的 ∂ A x , ϵ \partial \mathcal{A}_{x,\epsilon} Ax,ϵ总是有个0测集(空集or与其他无交)然后其必包含于 P − P- P连续集类 A P \mathcal{A}_P AP中,同时 A P \mathcal{A}_P AP π \pi π-系,故 A P \mathcal{A}_P AP满足Thm2.3的条件。

Thm 2.6 P n ⇒ P P_n\Rightarrow P PnP当且仅当任意测度子列包含子列收敛至 P P P
证明思路充分性通过反证法+有子列 ∣ P n i f − P f ∣ > ϵ |P_{n_i}f-Pf|>\epsilon PnifPf>ϵ故这个子列的子列无法收敛至 P P P

连续映射定理

P n ⇒ P P_n\Rightarrow P PnP P D h = 0 PD_h=0 PDh=0, 则 P n h − 1 ⇒ P h − 1 P_nh^{-1}\Rightarrow Ph^{-1} Pnh1Ph1
证明思路:从闭集出发,去掉不连续点集后可把闭包符号套入函数内。
lim ⁡ sup ⁡ P n ( h − 1 F ) ≤ lim ⁡ sup ⁡ P n ( h − 1 F ) − ≤ P ( h − 1 F ) ≤ P ( h − 1 F ) − ∩ D h c ≤ P ( h − 1 ( F − ) ) ≤ P ( h − 1 ( F ) ) \lim\sup P_n(h^{-1}F) \leq \lim\sup P_n(h^{-1}F)^- \leq P(h^{-1}F) \leq P(h^{-1}F)^- \cap D_h^c \leq P(h^{-1}(F^-))\leq P(h^{-1}(F)) limsupPn(h1F)limsupPn(h1F)P(h1F)P(h1F)DhcP(h1(F))P(h1(F)) 即为Thm2.1 的(iii)

乘积空间中的收敛判定

Thm 2.8.1 T = S ′ × S ′ ′ T=S'\times S'' T=S×S可分,则 P n ⇒ P P_n\Rightarrow P PnP当且仅当 P n ( A ′ × A ′ ′ ) ⇒ P ( A ′ × A ′ ′ ) P_n(A'\times A'')\Rightarrow P(A'\times A'') PnA×APA×A在任意 P ′ P' P-连续集 A ′ A' A P ′ ′ P'' P-连续集 A ′ ′ A'' A上成立。
Thm 2.8.2 T = S ′ × S ′ ′ T=S'\times S'' T=S×S可分,则 P n ′ × P n ′ ′ ⇒ P ′ × P ′ ′ P_n'\times P_n'' \Rightarrow P'\times P'' Pn×PnP×P当且仅当 P n ′ ⇒ P ′ P_n'\Rightarrow P' PnP P n ′ ′ ⇒ P ′ ′ P_n''\Rightarrow P'' PnP

第三章:另一种说法:依分布收敛

符号

L ( X ) \mathcal{L}(X) L(X): Law of X X X
P f Pf Pf: E [ f ( X ) ] E[f(X)] E[f(X)]

定义

随机变量: S S S R \mathbb{R} R
随机序列: S S S R ∞ \mathbb{R}^{\infty} R
分布: P = P ( X − 1 ) : P A = P ( X − 1 A ) = P [ X ∈ A ] P=P(X^{-1}): PA=P(X^{-1}A)=P[X\in A] P=P(X1):PA=P(X1A)=P[XA],亦称为law of X X X
依概率收敛: P [ ρ ( X n , a ) < ϵ ] → 1 P[\rho(X_n,a)<\epsilon]\rightarrow 1 P[ρ(Xn,a)<ϵ]1。记作 X n ⇒ a X_n\Rightarrow a Xna
X n X_n Xn一致可积: lim ⁡ α sup ⁡ n ∫ ∣ X n ∣ ≥ α ∣ X n ∣ d P = 0 \lim _{\alpha} \sup _{n} \int_{\left|X_{n}\right| \geq \alpha}\left|X_{n}\right| d P=0 limαsupnXnαXndP=0

知识体系

一些说法上的一致性:

X n ⇒ X X_n\Rightarrow X XnX, 其中 X n ∼ P n X ∼ P X_n\sim P_n \quad X\sim P XnPnXP, 则以下表示一致:
{ P n ⇒ P X n ⇒ X X n ⇒ P P n ⇒ X \left\{\begin{array}{l}P_{n} \Rightarrow P \\ X_{n} \Rightarrow X \\ X_{n} \Rightarrow P \\ P_{n} \Rightarrow X\end{array}\right. PnPXnXXnPPnX

依概率收敛

Thm3.1 基本定理从联合分布推依分布收敛
X n ⇒ X , ρ ( X n , Y n ) ⇒ 0 X_n\Rightarrow X, \quad \rho(X_n, Y_n)\Rightarrow 0 XnX,ρ(Xn,Yn)0, 则 Y n ⇒ X Y_n\Rightarrow X YnX
证明思路:同加一个减一个,即先写出对于闭集 F F F, F ϵ = { x : ρ ( x , F ) < ϵ } F_{\epsilon}=\{x: \rho(x,F)<\epsilon\} Fϵ={ x:ρ(x,F)<ϵ}
此时, P ( Y n ∈ F ) ≤ P ( X n ∈ F ϵ ) + P ( ρ ( X n , Y n ) ≥ ϵ ) P(Y_n\in F)\leq P(X_n\in F_{\epsilon})+P(\rho(X_n, Y_n)\geq\epsilon) P(YnF)P(XnFϵ)+P(ρ(Xn,Yn)ϵ)。所以 lim ⁡ sup ⁡ P ( Y n ∈ F ) ≤ P ( X n ∈ F ϵ ) \lim \sup P(Y_n\in F)\leq P(X_n\in F_{\epsilon}) limsupP(YnF)P(XnFϵ),再令 ϵ → 0 \epsilon\rightarrow 0 ϵ0即得。

Thm3.2 ( X u n , X n ) (X_{un},X_n) (Xun,Xn) 满足 X u n ⇒ n Z u ⇒ u X X_{un}\Rightarrow_n Z_u \Rightarrow_u X XunnZuuX lim ⁡ u lim ⁡ n sup ⁡ P [ ρ ( X u n , X n ) ≥ ϵ ] = 0 \lim_u\lim_n\sup P[\rho(X_{un},X_n)\geq\epsilon]=0 limulimnsupP[ρ(Xun,Xn)ϵ]=0 对任意 ϵ \epsilon ϵ成立
证明思路:与之前相同,
P [ X n ∈ F ] ≤ P [ X u n ∈ F ϵ ] + P [ ρ ( X u n , X n ) ≥ ϵ ] \mathrm{P}\left[X_{n} \in F\right] \leq \mathrm{P}\left[X_{u n} \in F_{\epsilon}\right]+\mathrm{P}\left[\rho\left(X_{u n}, X_{n}\right) \geq \epsilon\right] P[XnF]P[XunFϵ]+P[ρ(Xun,Xn)ϵ],两边 lim sup ⁡ n \limsup_n nlimsup,则 lim ⁡ sup ⁡ n P [ X n ∈ F ] ≤ P [ Z u ∈ F ϵ ] + lim ⁡ sup ⁡ n P [ ρ ( X u n , X n ) ≥ ϵ ] \lim\sup_n\mathrm{P}\left[X_{n} \in F\right] \leq \mathrm{P}\left[Z_{u} \in F_{\epsilon}\right]+\lim\sup_n\mathrm{P}\left[\rho\left(X_{u n}, X_{n}\right) \geq \epsilon\right] limsupnP[XnF]P[ZuFϵ]+limsupnP[ρ(Xun,Xn)ϵ]

再两边 lim sup ⁡ u \limsup_u ulimsup,则 lim ⁡ sup ⁡ n P [ X n ∈ F ] ≤ P [ X ∈ F ϵ ] \lim\sup_n\mathrm{P}\left[X_{n} \in F\right] \leq \mathrm{P}\left[X \in F_{\epsilon}\right] limsupnP[XnF]P[XFϵ]

局部收敛vs积分后收敛

局部收敛可推出积分后收敛
对于 [ y : x i − δ i ( n ) < y i ≤ x i , i ≤ k ] , x ∈ L n \left[y: x_{i}-\delta_{i}(n)<y_{i} \leq x_{i}, i \leq k\right], \quad x \in L_{n} [y:xiδi(n)<yixi,ik],xLn v n = δ 1 ( n ) . . . δ k ( n ) v_n=\delta_1(n)...\delta_k(n) vn=δ1(n)...δk(n)
Thm3.3 对于 δ 1 ( n ) ∨ ⋯ ∨ δ k ( n ) → n 0 \delta_{1}(n) \vee \cdots \vee \delta_{k}(n) \rightarrow_{n} 0 δ1(n)δk(n)n0,若 x n → x x_n\rightarrow x xnx可推出 p n ( x n ) / v n → p ( x ) p_n(x_n)/v_n\rightarrow p(x) pn(xn)/v

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值