- 博客(18)
- 收藏
- 关注
原创 Mac M1切换conda的base
由于M1不能在anaconda中直接安装tensorflow,需要安装miniforge3,因此在来回用miniforge和anaconda时就需要切换conda的base。从anaconda切到miniforge3:/Users/xxx/miniforge3/bin/conda init zsh/Users/xxx/miniforge3/bin/conda init bash从miniforge3切到anaconda:/Users/xxx/opt/anaconda3/bin/conda ini
2022-03-29 14:58:27 2731 1
原创 图像相似度比较之哈希算法
哈希算法是一个函数,能把几乎所有的数字文件转换为一串由字符和数字组成的看似乱码的字符串。因此哈希函数也是加密函数,它具备两个特点:不可逆性。输入信息得到输出的哈希值往往比较容易,但是由输出的字符串反推输入信息非常难。输出值唯一性和不可预测性。即便两个输入信息只有一点点区别,得到的哈希值也会相差甚远。均值哈希算法aHash步骤:将图片缩放为88,保留结构,除去细节(为什么是88?为了后续生成64位的值)转换为灰度图(如果要考虑色彩的相似性,就不用转)计算灰度图所有像素的平均值像素值大于平
2022-03-16 18:42:01 1527
原创 随机采样一致性RANSAC
RANSAC实际上是一种基于迭代的思想,用来在含有离群的被观测数据中估算出数学模型的参数。如下图,有一系列数据点,现在要拟合一条直线来逼近下列数据,如果直接使用最小二乘法,会得到下图中红色那条直线,因为它会尽可能地去拟合所有的数据点,包括噪声。但很显然,这并不科学。如何让模型不去学习那些噪声,就是RANSAC要解决的问题。RANSAC的步骤:在数据中随机选n个点设定为内群计算适合内群的模型把其他刚才没选到的点代入模型,根据给定的阈值判断其是不是内群记下内群的数量重复以上步骤k次比较哪次记下
2022-03-16 17:54:46 822
原创 最小二乘法
假设有一系列数据点(xi,yi)(i=1,...,m)(x_i, y_i)(i=1,...,m)(xi,yi)(i=1,...,m),线性回归就是要找到一个拟合函数,使之尽可能地逼近这些数据点。假设拟合函数为h(x)=kx+bh(x)=kx+bh(x)=kx+b,那么每个样本的估计量就是h(xi)h(x_i)h(xi),进而实际值和估计量的残差为:ri=h(xi)−yir_i=h(x_i)-y_iri=h(xi)−yi对于残差rir_iri,有三种相关的范数:∞\infin∞-范数:残差
2022-03-16 14:04:16 1662
原创 opencv大坑之BGR
opencv读进来的图片通道排列是BGR,而不是主流的RGB!!!这点很容易被忽略。如果想转成RGB,可以这么转:img_bgr = cv2.imread(1.jpg)img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)除了opencv读入彩色图片以BGR顺序存储之外,其他所有图像库读入彩色图片都以RGB存储。除了PIL读入的图片是img类之外,其他库读进来的图片都是numpy矩阵。对比各大图像库,无论是速度还是图片操作的全面性,最好用的还是op
2022-03-16 10:50:04 5597
原创 学习记录八
图像滤波器图像噪声高斯噪声椒盐噪声其他噪声图像滤波均值滤波中值滤波最大最小值滤波图像增强点处理线性变换分段线性变换对数变换幂律变换/伽马变换领域处理图像噪声图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。很多时候将图像噪声看做多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,也就是用它的高斯分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到了噪声的污染。在噪声的概念中,通常采用信噪比
2022-01-06 17:38:07 3078
原创 学习记录七
三维计算机视觉立体视觉双目系统&视差单目系统双目系统SIFT(尺度不变特征变换)生成高斯差分金字塔(DOG金字塔),尺度空间构建尺度空间极值检测稳定关键点的精确定位稳定关键点方向信息分配关键点描述特征点匹配立体视觉立体视觉是一种计算机视觉技术,其目的是从两幅或两幅以上的图像中推理出图像中每个像素点的深度信息。可以理解为,人眼看到物体时能估计出物体的远近,计算机要想实现自动驾驶,也需要知道前面的车距离自己的距离,也就是说,需要具备判断目标物体远近的能力,这也就是所谓的“深度信息”。当然,人眼有
2022-01-04 22:05:55 1670
原创 几种金字塔详解
图像金字塔如果把一个图片从原始分辨率不停的对其分辨率进行减少,然后将这些图片摞在一起,可以看成一个四棱锥的样式,这个东西就叫做图像金字塔。图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像素点的图像,这就构成了传统意义上的图像金字塔。获取金字塔步骤:利用低通滤波器平滑图像 (高斯滤波)对平滑图像进行采样。有两种采
2022-01-04 14:36:55 660
原创 学习记录六
欧拉角与万向锁欧拉角由欧拉角求旋转矩阵由旋转矩阵求欧拉角万向锁四元数四元数求旋转矩阵旋转矩阵求四元数欧拉角任何一个旋转可以表示为依次绕着三个旋转轴旋三个角度的组合。这三个角度就称为欧拉角。三个旋转轴次序不同, 会导致结果不同。旋转顺序可以是任意的,可以是xyz,xzy,yxz,zxy,yzx,zyx中的任何一种,甚至可以是xyx,xyy,xzz,zxz等等。三个轴可以指固定的世界坐标系轴,也可以指被旋转的物体坐标系的轴。由此可以得到欧拉角的两种分类:静态:即绕世界坐标系三个轴的旋转,由于物体旋转过
2021-12-30 16:35:43 397
原创 学习记录五
几种聚类算法层次聚类凝聚的层次聚类分裂的层次聚类密度聚类DBSCAN谱聚类(拓展)层次聚类层次聚类是一种很直观的算法,顾名思义就是要一层一层地进行聚类。层次聚类算法根据层次分解的顺序分为:自下向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法。凝聚的层次聚类最初将每个对象作为一个蔟,再将这些蔟根据某些准则(如蔟间距离)一步步合并,直到所有对象都在一个簇中,或者某个终结条件被满足。具体算法流程如下:(以最小距离为例)(1) 将每个对象看作一类,计算两两之间的最小距离;(2) 将距离最小的两个
2021-12-26 10:17:25 635
原创 图像K-Means函数
图像K-Means函数函数原型:retval, bestLabels, centers = kmeans(data, K, bestLabels, criteria, attempts, flags, centers=None)函数参数:data: 需要分类数据,最好是np.float32的数据,每个特征放一列K: 聚类个数bestLabels:预设的分类标签或者Nonecriteria:迭代停止的模式选择,这是一个含有三个元素的元组型数。格式为(type, max_iter, epsil
2021-12-22 11:24:39 1648
原创 学习记录四
相机模型相机模型世界坐标系到摄像机坐标系摄像机坐标系到图像物理坐标系图像物理坐标系到图像像素坐标系做图像怎么能不知道图像是怎么来的呢,也就是现实生活中的物体是咋转换成数字图像的,即相机的成像原理。相机模型相机模型存在四个坐标系:世界坐标系、摄像机坐标系、图像物理坐标系和图像像素坐标系。相机成像的原理其实就是将物体的世界坐标–>摄像机坐标–>图像物理坐标–>图像像素坐标。世界坐标系:是客观三维世界的绝对坐标系,也称客观坐标系。就是物体在真实世界中的坐标。 世界坐标系是随着物体的大小
2021-12-11 17:43:27 2207
原创 学习记录三
边缘提取基础知识Laplacian算子Canny算子非极大值抑制双阈值算法检测(滞后阈值)基础知识梯度:是一个向量(矢量)。表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。图像的边缘:指图象局部区域亮度变化显著的部分。通常边缘上的灰度变化平缓,边缘两侧的灰度变化较快。(注:就像导数有正值也有负值一样,边缘也有正负之分:由暗到亮为正,由亮到暗为负)边缘检测原理:在边缘部分,像素值出现”跳跃“或者较大的变化。因此在边缘
2021-11-26 18:45:16 2615
原创 主成分分析PCA
主成分分析PCAPCA--零均值化(中心化)PCA--协方差矩阵PCA--求特征值、特征矩阵PCA--对特征值进行排序PCA--评价模型的好坏,K值的确定简单来说,PCA就是将数据从原始的空间中转换到新的特征空间中。例如原始的空间是三维的(x,y,z),x、y、z分别是原始空间的三个基,我们可以通过某种方法,用新的坐标系(a,b,c)来表示原始的数据,那么a、b、c就是新的基,它们组成新的特征空间。在新的特征空间中,可能所有的数据在c上的投影都接近于0,即可以忽略,那么我们就可以直接用(a,b)来表示原来
2021-11-24 15:23:35 959
原创 学习记录二
特征选择一、 特征二、特征选择(一)过滤法(Filter)单变量多变量连续型VS连续型连续型VS离散型离散型VS离散型(二)包裹法(wraper)完全搜索穷举搜素非穷举搜索启发式搜索前向搜索后向搜索双向搜索递归特征消除随机搜索随机特征子集Null Importance(三)嵌入法(Embedded)基于惩罚项回归分类基于树模型回归问题分类问题一、 特征一般来说,一个样本是用多个特征来表征的。特征可以理解为属性,它可以被分为三类:相关特征:可以提升学习算法的效果;无关特征:不会给算法的效果带来任何提
2021-11-17 20:55:08 955
原创 学习记录一
图像&视频目录一、图像相关概念二、图像的取样和量化三、上采样与下采样四、直方图五、滤波和卷积线性滤波卷积六、几种简单的卷积核一个没有任何用的卷积平滑均值滤波高斯平滑图像锐化七、Soble边缘检测目录一、图像相关概念像素:分辨率的单位,图像的基本单元。分辨率(解析度):单位英寸内的像素点数。(注:图像分辨率不等于图像像素总数)灰度:表示图像像素明暗程度的数值。范围 为0-255,白色是255,黑色是0.色调:各种图像色彩模式下原色的明暗程度,范围0-255,共256级色调。通道:把图像分
2021-11-15 17:52:39 3262
原创 最近邻插值与双线性插值
最近邻插值与双线性插值最近邻插值The nearest interpolation顾名思义,最近邻插值法在放大图像时补充的像素是最近邻的像素的值。由于方法简单,所以处理速度很快,但是得到的图像常常含有锯齿边缘。如下图所示:import cv2import numpy as npdef function(img): height,width,channels =img.shape emptyImage=np.zeros((800,800,channels),np.uint8)
2021-11-14 16:55:37 4576
原创 本地电脑查看远程服务器Tensoboard可视化界面
本地电脑查看远程服务器Tensoboard可视化界面1、首先利用ssh进行本地端口转发命令行下输入:ssh -L 2333:127.0.0.1:6006 xiaoming@123.123.123.123(其中xiaoming是服务器的个人用户名,123.123.123.123是服务器ip地址,2333是本地端口号)输入密码后就登陆了远程服务器,并且服务器端的6006端口对应PC机端的2333端口。也就是说,在本地访问2333端口就相当于访问服务器端的6006端口。2、...
2021-09-13 14:44:47 723
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人