定义
相交于同一条直线的所有平面组成的集合。这条直线称为共线平面束的轴。
别称
1、有轴平面束;
2、相交平面束。
方程
方程:
μ(A1x+B1y+C1z+D)+λ(A2x+B2y+C2z+D)=0
注意:
1、λ越大,两个平面的夹角越大;
2、因为两个平面要相交才有一条公共的直线,所以A1、B1、C1和A2、B2、C2不成比例;
3、A1、B1、C1不同时为0,A2、B2、C2不同时为0;
4、μ=1时,方程表达的平面束不包括A2x+B2y+C2z+D;同理,λ=1时,方程表达的平面束不包括A1x+B1y+C1z+D。
应用
平面π过某直线且满足其他条件,求平面π的方程。
例题
例题一:
平面2x-y-2z+1=0与平面x+y+4z-2=0交于直线l,平面π过直线l,求满足下列条件的平面π。
(1)平面π与平面x-3y+z-2=0垂直。
(2)平面π在y和z上的非零截距相同。
解:
设平面束方程:2x-y-2z+1+λ(x+y+4z-2)=0,整理后有(2+λ)x+(λ-1)y+(4λ-2)z+1-2λ=0。
第一问:
两个平面垂直,则它们的法向量也相互垂直,所以向量(2+λ,λ-1,4λ-2)与向量(1,-3,1)相互垂直,
即它们的内积等于0。(2+λ,λ-1,4λ-2)·(1,-3,1)=0,⇒λ=-3/2,带入平面束方程得到平面π的方程:
(1/2)x-(5/2)y-8z+4=0。
第二问:
因为平面π与y和z上的非零截距相同,所以平面π的y和z上的系数相等。于是有λ-1=4λ-2,λ=1/3,
得到平面π的方程:(7/3)x-(2/3)y-(2/3)z+1/3=0
x+y-z-1=0
例题二:求直线l:x-y+z+1=0 在平面π:x+y+z=0上投影的直线的方程。
解:
设共线平面束方程:x+y-z-1+λ(x-y+z+1)=0,变形后得:(1+λ)x+(1-λ)y+(λ-1)z+λ-1=0。
由题意可知,过直线l做平面π上的投影经过的平面α与平面π垂直,所以这两个平面的法向量正交。
所以有:(1+λ,1-λ,λ-1)·(1,1,1)=0,求得λ=-1,从而求得平面α为y-z-1=0。所求直线为:
x+y+z=0
y-z-1=0。