文本检测
文章平均质量分 94
分享最新的、经典的或性能最好的文本检测算法。
Mr.小梅
这个作者很懒,什么都没留下…
展开
-
文本检测算法----TextFuseNet(IJCAI-PRICAI-20)
TextFuseNet: Scene Text Detection with Richer Fused Features前言1. 算法简介2. 算法详解2.1 网络结构2.2 Multi-level Feature Representation2.3 Multi-path Fusion Architecture3.4 loss函数3.5 Weakly Supervised Learning4. 测试结果前言 自然场景中任意形状文本检测是一项极具挑战性的任务,与现有的仅基于有限特征表示感知文本的原创 2021-01-23 17:38:04 · 2571 阅读 · 0 评论 -
文本检测算法:TextBoxes(AAAI2017)
多种文本检测算法性能对比(https://blog.csdn.net/qq_39707285/article/details/108754444)TextBoxes: A Fast Text Detector with a Single Deep Neural Network1. 论文要点1. 论文要点提出了一个end-to-end可训练的快速文本检测算法,叫做 TextBoxes,能后一阶段的完成检测任务,在准确性和高效性方面都表现优异,且该算法除了NMS,没有使用任何的后处理步骤。 TextB原创 2020-10-18 16:00:06 · 1914 阅读 · 0 评论 -
端到端文本识别算法:CRAFTS(ECCV2020)
多种文本检测算法性能对比(https://blog.csdn.net/qq_39707285/article/details/108754444)论文题目:Character Region Awareness for Text Detection1. 关键点2. 算法2.1 综述2.2 检测阶段2.3 共享阶段Character Region Awareness for Text Detection(CRAFTS),是CRAFT作者的进化版本,用作端到端的文本识别,包括文本检测+文本识别,且其中的检测原创 2020-10-14 20:44:32 · 4442 阅读 · 2 评论 -
文本检测算法:CRAFT(CVPR2019)
多种文本检测算法性能对比(https://blog.csdn.net/qq_39707285/article/details/108754444)Character Region Awareness for Text Detection1. 关键点2. 算法2.1 网络结构2.2 训练2.2.1 生成GT1. 关键点先前的文本检测算法通常使用刚性单词级别的边界框训练的方法,导致这类算法在检测任意形状文本区域方面存在局限性。本文设计了一种新的文本检测算法,通过检测每个字符和字符之间的联系来有效地检原创 2020-10-13 20:03:56 · 6257 阅读 · 0 评论 -
文本检测与识别评价标准
本文介绍文本检测和文本识别的Evaluation ProtocolsText DetectionEvaluation protocols of ICDAR 2003 and 2005定义m如下所示:其中Area(A∩B)即矩形A和B相交的面积(如图中红色部分);Area(A and B)代表the minimum bounding rectangle containing both(...原创 2019-10-10 14:56:00 · 2767 阅读 · 0 评论 -
文本检测算法:CTPN
Detecting Text in Natural Image with Connectionist Text Proposal Network1. 简单介绍1.1 关键点1.1 性能表现2. CTPN2.1 Detecting Text in Fine-scale Proposals3.2 文本候选框连接RNN3.3 精修边界3.4 损失函数3.5 训练细节4. 实验结果5. 结论CTPN于2016年发表于ECCV,该论文是文本检测算法中很经典的一个,是一种基于回归的算法,提出了固定定宽的anchor机原创 2020-09-26 08:49:12 · 1729 阅读 · 0 评论 -
文本检测算法性能对比
文本检测算法性能对比1. 任意四边形文本数据集1.1 ICDAR15[^1]2. 曲形文本数据集2.1 CTW1500[^10]2.2 Total-Text[^11]本文会一直更新经典的、最新的或性能最好的文本检测算法1. 任意四边形文本数据集1.1 ICDAR151该数据集包含1000张图片,其中训练集500张,测试集500张,这些图片从谷歌街景中搜集。目标是多个方向,标注为word级别的,四个点的坐标。算法发表时间算法类型PRFCTPN2ECCV-2016Reg原创 2020-09-23 16:55:23 · 5214 阅读 · 0 评论 -
文本检测算法----DB、DBNet
Real-time Scene Text Detection with Differentiable Binarization1. 摘要1.1 存在的问题1.2 创新点1.3 取得的成绩2. 算法2.1 二值化2.1.1 标准二值化2.1.2 可微二值化 Differentiable binarization(DB)2.2 自适应阈值2.3 可变形卷积Deformable convolution2.4 标签的生成2.5 损失函数3. 实验3.1 数据集3.2 训练、测试细节3.2.1 训练细节3.2.2 测原创 2020-09-22 21:40:34 · 12668 阅读 · 2 评论 -
文本检测算法----ABCNet(CVPR2020)
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network1. 摘要1.1 文本检测现状1.2 本文解决方法1.3 取得的成绩2. Adaptive Bezier Curve Network (ABCNet)2.1 Bezier Curve Detection2.2 BezierAlign2.31. 摘要1.1 文本检测现状现存的算法大致可以分为两类,character-based和segmentation-ba原创 2020-09-21 21:17:53 · 3126 阅读 · 3 评论 -
文本检测算法----ContourNet(CVPR2020)
ContourNet: Taking a Further Step toward Accurate Arbitrary-shaped Scene Text Detection1. 摘要1.1 文本检测目前存在的挑战1.2 解决方法1.3 算法性能2. Proposed Method2.1 Overall pipeline2.2 Adaptive Region Proposal Network2.3 Local Orthogonal Texture-aware Module2.4 Point Re-sco原创 2020-09-20 21:52:36 · 1931 阅读 · 0 评论 -
文本检测算法----IncepText
IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection1. 本文亮点1.1 文本检测存在的问题1.2 解决方法1.3 算法性能2. The Proposed Method2.1 Overview2.2 Inception-Text2.3 Deformable PSROI Pooling2.4 Ground Truth and Loos Functi原创 2020-09-20 17:12:40 · 801 阅读 · 0 评论 -
文字检测算法——PSENet阅读笔记
论文题目:Shape Robust Text Detection with Progressive Scale Expansion Network论文摘要目前文字检测存在的挑战大多数最先进的算法都需要精确的四边形bounding box来定位任意形状的文本,而不能检测curve文本,如Fig. 1(b)对于两个比较接近的文本行可能会导致一个错误的检测,检测结果会覆盖两个实例,如Fig. ...原创 2020-05-05 14:43:38 · 2316 阅读 · 0 评论 -
文字检测算法——EAST阅读笔记
论文题目:EAST: An Efficient and Accurate Scene Text DetectorDATA:2017年7月10日Abstract之前的文字检测算法在处理较难的场景时往往会出错,即使是使用了深度学习算法的也表现的不好,因为这些算法由多个步骤组成,不仅耗时,表现还不好。本文提出了一个简单的能够快速准确定位场景文字的算法,改算法直接预测任意形状或矩形word或者行文本...原创 2020-05-05 14:44:09 · 722 阅读 · 0 评论