轻量级神经网络算法-总结对比

4. 轻量级神经网络算法目录

  1. 轻量级神经网络算法
    4.1 各轻量级神经网络算法总结对比
    4.2 SqueezeNet
    4.3 DenseNet
    4.4 Xception
    4.5 MobileNet v1
    4.6 IGCV
    4.7 NASNet
    4.8 CondenseNet
    4.9 PNASNet
    4.10 SENet
    4.11 ShuffleNet v1
    4.12 MobileNet v2
    4.13 AmoebaNet
    4.14 IGCV2
    4.15 IGCV3
    4.16 ShuffleNet v2
    4.17 MnasNet
    4.18 MobileNet v3


4.1 各轻量级神经网络算法对比

轻量级神经网络准确率、Params、MAdds、推理时间等对比,对比数据集:ImageNet 2012 classification dataset。

Date Model Detail Top-1 Acc. (%) Top-5 Acc. (%) Params(M) MAdds(M) Infer-time(ms)
2016.2 SqueezeNet 67.5 88.2 3.2 708
2016.8 DenseNet DenseNet(0.5) 41.4 42 25
DenseNet(1.0) 44.8 142 63
DenseNet(1.5) 60.1 295 103
DenseNet(2.0) 65.4 519 164
2016.1 Xception Xception(0.5) 55.1 40 19
Xception(1.0) 65.9 145 51
Xception(1.5) 70.6 305 95
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值