Flink 运行架构与编程模型

本文详细探讨了Flink的运行架构,包括Client、Dispatcher、JobManager、ResourceManager和TaskManager的角色,以及Task、Operator和Slot的概念。此外,还讲解了Flink中的时间语义,如Processing Time、Event Time和Ingestion Time,以及Window机制和Watermark在处理延迟数据中的作用。最后讨论了延迟数据的处理策略,如Allowed Lateness和Side Output。
摘要由CSDN通过智能技术生成

七年前如果提起实时流式计算,老程序猿们想到的应该是 Storm,四年前再提到,大家脱口而出的会是 Spark Streaming,现在再说到实时计算那无疑都会指向 Flink 了。可见开源世界技术的迭代是飞速的,稍不留神就落伍了。

言归正传,上一篇我们讲了 SparkStreaming 和简单地介绍了衍生的 StructedStreaming,也提到了 StructedStreaming 在很多概念和设计理念上都是和 Flink 相似的,The Dataflow Model 是一篇非常经典的 Paper,建议学习流式计算的小伙伴都可以好好地读这篇论文。

本篇面试内容划重点:各种角色和概念,Time、Window、WaterMark。

Flink 运行架构详解

image.png

Flink 集群运行的各个组件:

  • Client 端,Flink 会根据开发者写的程序代码构建作业图(JobGraph),逻辑数据流图(logical dataflow graph),然后将任务提交给 Dispatcher 进行下一步执行。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老蒙大数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值