题目
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
思路一:递归
具体代码如下:
当前节点值大于左子节点值且小于右子节点值,不满足则返回false。
除此之外当前节点值还要大于左子树的最大值,右子树的最小值。
所以设置两个值lower
和upper
作为下界和上界,下界对应左子树的最大值,上界对应右子树的最小值。
下一步遍历根节点左子树时,上界更新为根节点的值,
遍历根节点右子树时,下界更新为根节点的值。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBSTCore(TreeNode* root,long lower,long upper){
if(!root)
return true;
if(root->val >=upper || root->val <= lower)
return false;
if(!(isValidBSTCore(root->left,lower,root->val)))
return false;
if(!(isValidBSTCore(root->right,root->val,upper)))
return false;
return true;
}
bool isValidBST(TreeNode* root) {
if(!root)
return true;
return isValidBSTCore(root,LONG_MIN,LONG_MAX);
}
};
思路二:中序遍历
中序遍历查看是否升序
具体代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
if(!root)
return true;
stack<TreeNode*> s;
TreeNode* cur = root;
long t = LONG_MIN;
while(cur != nullptr || !s.empty()){
while(cur != nullptr){
s.push(cur);
cur = cur->left;
}
cur = s.top();
s.pop();
if(cur->val <= t) // 如果当前数比前一个数要小,不满足递增特性,返回false
return false;
t = cur->val;
cur = cur->right;
}
return true;
}
};