mmcv与cuda,pytorch版本匹配要求

mmcv与cuda、pytorch版本兼容要求,见mmcv官方文档:https://mmcv.readthedocs.io/zh_CN/latest/get_started/installation.html#pip 安装部分。

目前网页上默认最新版2.x版本,若要切换旧版,点击页面左下角切换即可

在这里插入图片描述

  1. 查看自己的cuda和torch版本:

    python -c 'import torch;print(torch.__version__);print(torch.version.cuda)'
    # pytorch 2.0版本需要cuda11.7及以上
    
  2. 点击文档链接 选择自己所需版本,拷贝对应的安装命令,进行安装
    在这里插入图片描述
    注意!!! open-mmlab家族已全面升级版本(1.x),与0.x有较大变化,不再兼容。mmcv中与cv无关的操作已迁至mmengine中。所以mmcv1.x与mmcv2.x版本不兼容,看一下自己的mmlab工程需要mmcv旧版还是新版
    以上链接mmcv不再可选旧版1.x版本,可根据需要手动修改安装命令中的mmcv版本。
    mmcv1.x版本号说明:
    PyTorch 在 1.x.0 和 1.x.1 之间通常是兼容的,故 mmcv 只提供 1.x.0 的编译包。如果你 的 PyTorch 版本是 1.x.1,你可以放心地安装在 1.x.0 版本编译的 mmcv。

mmcv1.x版本安装命令查询https://mmcv.readthedocs.io/zh_CN/1.x/get_started/installation.html#pip
在这里插入图片描述

  1. 如果安装依赖库的时间过长,可以指定 pypi 源:

    pip install mmcv -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html -i https://pypi.tuna.tsinghua.edu.cn/simple
    
  2. opencv-python-headless说明
    如果你打算使用 opencv-python-headless 而不是 opencv-python,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 opencv-python-headless,这样在安装 mmcv 依赖的过程中会跳过 opencv-python。

### MMCV CUDA兼容性的实现 为了使MMCVCUDA环境相适应,通常需要遵循特定的安装和配置过程。尽管提供的引用材料并未直接涉及此主题,基于专业知识可以给出指导。 #### 安装依赖项 确保已正确安装CUDA工具包以及cuDNN库版本匹配所使用的GPU架构和支持的PyTorch版本。这一步骤对于任何想要利用GPU加速的应用程序来说都是至关重要的[^1]。 #### 使用预编译二进制文件安装MMCV 最简单的方式是从官方渠道获取已经针对不同操作系统预先构建好的轮子(wheel),这些轮子里包含了必要的CUDA扩展支持。命令如下: ```bash pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu{cuda_version}/torch{pytorch_version}/index.html ``` 这里`{cuda_version}`应替换为实际安装的CUDA版本号,而`{pytorch_version}`则对应于当前环境中PyTorch的具体版本。 #### 编译源码以获得最佳性能 如果希望自定义某些功能或者解决可能存在的平台特异性问题,则可以选择从源代码开始编译整个项目。在此之前,请确认Python开发头文件、CMake以及其他必需组件均已就绪。执行下列指令完成本地化定制: ```bash git clone https://github.com/open-mmlab/mmcv.git cd mmcv PYTHON_VERSION=$(python3 -c "import sys;print(f'{sys.version_info.major}{sys.version_info.minor}')") \ TORCH_CUDA_ARCH_LIST="6.0 7.0 7.5+PTX" \ FORCE_CUDA=1 \ python setup.py build develop ``` 上述脚本中的变量可以根据个人需求调整;特别是`TORCH_CUDA_ARCH_LIST`应该反映目标硬件的能力集。 通过以上方法之一即可成功让MMCV运行在带有CUDA支持的环境中,从而充分利用图形处理器的强大计算能力来提升模型训练效率。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值