首先,不考虑相移,对连续函数cos(w*t)进行抽样,设离散时间余弦函数为cos(w*n*T) = cos(Ω*T),其中w是角频率,T是采样周期,Ω = w*T为离散角频率
第二,为了满足离散余弦函数的周期性,所以需要满足条件Ω≥2kπ(k为整数),也就满足了每个周期采集的样本数和采集位置的固定
第三,为了满足采样定理,则1 / T ≥ w / π = (Ω / T) / π,即Ω ≤ π
结论, 2kπ≤Ω≤π,所以Ω只能取π,即离散时间余弦函数角频率带限为常数π
首先,不考虑相移,对连续函数cos(w*t)进行抽样,设离散时间余弦函数为cos(w*n*T) = cos(Ω*T),其中w是角频率,T是采样周期,Ω = w*T为离散角频率
第二,为了满足离散余弦函数的周期性,所以需要满足条件Ω≥2kπ(k为整数),也就满足了每个周期采集的样本数和采集位置的固定
第三,为了满足采样定理,则1 / T ≥ w / π = (Ω / T) / π,即Ω ≤ π
结论, 2kπ≤Ω≤π,所以Ω只能取π,即离散时间余弦函数角频率带限为常数π