离散时间余弦函数角频率带限为常数π的推导

首先,不考虑相移,对连续函数cos(w*t)进行抽样,设离散时间余弦函数为cos(w*n*T) = cos(Ω*T),其中w是角频率,T是采样周期,Ω = w*T为离散角频率

第二,为了满足离散余弦函数的周期性,所以需要满足条件Ω≥2kπ(k为整数),也就满足了每个周期采集的样本数和采集位置的固定

第三,为了满足采样定理,则1 / T ≥ w / π = (Ω / T) / π,即Ω ≤ π

结论, 2kπ≤Ω≤π,所以Ω只能取π,即离散时间余弦函数角频率带限为常数π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值