离散数学-群和环

半群和独异点

代数系统是由一个非空集合加上一个或几个运算构成的。
从这节起,我们要介绍一些特殊的代数系统。所谓特殊,是指这些代数系统中的运算具有特殊的性质。我们要介绍下列一-些代数系统:
1.半群:
定义:设S是非空集合,★是S上的二元运算,如果★在S上满足封闭性、可结合性,则称<S,*>是半群。

2.独异点:
设<M,★>是个半群,如果★运算有幺元,则称<M,★>是独异点,也称它是含幺半群。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3、可交换半群
设<S,★>是半群,如★是可交换的,则称<S,★>是可交换半群。
4、可交换独异点
<M,★>是独异点,如★是可交换的,则称<M,★>是可交换独异点。
例: <R,+>, <N,X>, <P(E),∩>, <P(E),对称差>都是可交换半群,亦是可交换独异点。
5.子半群
<S,★>是个半群,B⊆S,如果★在B上封闭,则称<B,★>是<S,★>的子半群。
例: <N,+> 是<I,+>的子半群
6.子独异点
<M,★>是个独异点, B⊆M,如果★在B上封闭,且幺元e∈B,则称<B,★>是<M,★>的子独异点。
例: <I,+> 是<R,+>的子独异点。

设<M,★>是可交换独异点,A是M中所有幂等元构成的集合,则<A,★>是<M,★>的子独异点。
显然A⊆M,若要证明<A,+>是<M,★>的子独异点,根据子独异点定义,只需证明么元e∈A以及封闭性即可。
在这里插入图片描述
要证明封闭,需要证明集合里面任意两个元素做运算,要证明这个运算仍然在A里面,
在这里插入图片描述

群的定义及性质

1.群的定义

群是抽象代数中最重要的代数系统。
在这里插入图片描述
1.群的定义:设<G,★>是代数系统,如果★运算在G上满足封闭性、可结合性、<G,★>中有幺元且G中的每个元素均可逆,则称<G,★>是群。
(1) 设<G,★>是群,若集合G是有限集,则称<G,★>是有限群。反之称为无限群。
(2)只含有幺元的群叫平凡群。
(3)若★运算是可交换的,则称<G,★>是交换群或阿贝尔(Abel)群

<R,+>、<P(E),⊕>是否是群?
<R,+>是独异点,幺元是0,对任意实数r,它的逆元是-r。
<P(E),⊕>幺元是∅,因对任意集合A∈P(E),A⊕A=中,
所以A-1=A,所以它们都是群。

<R,X>是独异点,幺元是1,零元是0。因为0没有逆元,所以<R,X>不是群。
<P(E),∩>是独异点,幺元是E。对任意集合A∈P(E)且A不等于全集E,是否有这样的集合使得A∩?=E?
没有这样的集合,即A没有逆元。所以<P(E),∩>不是群。

2.群的性质

群除了具有封闭、可结合、有幺元、每个元素均可逆这四个性质外,还有一-些其它性质。

1.群中无零元

设<G,★>是群,如果|G|>=2, 则G中无零元
证明: ( 反证法)假设G中有零元θ,则对任何x∈G,有θ★x=x★θ=θ≠e,所以零元θ就不存在逆元,这与<G,★>是群矛盾。所以群<G,★>中无零元。
如果一个代数系统既有零元又有幺元,则幺元和零元一定不能相等

2.群中每个元素均是可消去元。

设<G,*>是个群,则对任何a,b,c∈G,如果有
(1)a★b= a★c则b=c。
(2)b★a= c★a则b=c。
证明可以用定义证明,也可以用定理去证明。
用定理可以用如下定理
定理:设★是X上可结合的二元运算,如果a∈X,,且a-1∈X,则a是可消去元。
在这里插入图片描述

3.群中除幺元外,无其它幂等元。

设<G,★>是群,则G中除幺元外,没有其它幂等元。
证明:(反证法)假设有a∈G是幂等元,即a★a=a于是有a★a=a★e,由可消去性有a=e,所以群中除幺元外,无其它幂等元。

4.群方程有唯一解

设<G,★>是个群,则对任何a,b∈G,
(1)存在唯一元素x∈G,使得a★x=b …(1)
(2)存在唯一元素y∈G,使得y★a=b …(1)
思考:
方程a★x=b的解为a-1★b
方程y★a=b的解是什么?b★a-1
在这里插入图片描述

5.有限群运算表的特征

设<G,★>是有限群,则G中每个元素在★运算表中的每一行(列)都必出现且仅出现一次。
在这里插入图片描述
<G,★>是个群,对任何a,b∈G,有
(1) (a-1)-1=a
(2) (a★b)-1= b-1★a-1
在这里插入图片描述
在这里插入图片描述

群的阶与群中元素的阶

1.群的阶:
定义:设<G,★>是群,如果|G|=n,则称<G,★>是n阶群。
当G所包含的元素个数为有限时,群<G,★>的阶为G所包含的元素个数。
当G所包含的元素个数为无限时,群<G,★>为无限群。
在这里插入图片描述
从运算表可以看出:所有的一阶群都同构;所有的二阶群都同构;
所有的三阶群都同构。

2.群中元素的阶
定义:设<G,★>是群,a∈G,使得ak=e成立的最小正整数k称为a的阶,记作|a|=k,称a为k阶元。
若不存在这样的正整数k,则称a的阶是无限的。
如整数上的加法是无限的。
例如:群<I,+>是一个无限群,只有幺元0的阶是1,其余元素的阶都是无限的。
例: <X, o>的运算表如下图所示: <X, o>是否是群?若是群求各元素的阶。
在这里插入图片描述
设<G,★>是群,a∈G且|a|=k。设n是整数,则
(1)an=e当且仅当k/n
(2)|a-1|= |a|
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

子群及其证明

群的定义
在这里插入图片描述

子群的定义

设<G,★>是群,S是G的非空子集,如果<S,★>满足:
(1)对任何a,b∈S,均有a★b∈S; (封闭)
(2)幺元e∈S;(有幺元)
(3)对任何a∈S,有a1∈S(可逆)
则称<S,★>是<G,★>的子群。
子群:应该是原群的非空子集,本身也应该是一个群

任何群<G,★>都存在子群,<{e},★>及<G,★>都是<G,★>的子群,称为<G,★>的平凡子群。
平凡群是指<{e},★>,只有幺元e的集合。
例:代数系统<R,+>是群,代数系统<I,+>是<R,+>的子群。
因为I⊆R,任意两个整数做加法运算仍然是整数;幺元0∈l;对每个x∈l,其逆元-x∈I

子群的证明

在这里插入图片描述
用子群的定义证明:
即证明运算在非空子集上满足封闭性、有幺元、子集中每个元素均可逆。

子群判定定理1:(有限封闭)

设<G,★>是群,B是G的有限子集,如果★在B上满足封闭性,则<B,★>是<G,★>的子群
在这里插入图片描述
(1)先证明幺元e∈B
在这里插入图片描述
(2)再证B中每个元素均可逆,任意b∈B,都有b-1∈B。
在这里插入图片描述
综上,<B,★>是<G,★>的子群。
在这里插入图片描述

子群判定定理2:

设<G,★>是群,S是G的非空子集,如果对任意a,b∈S,均有a★b-1∈S,则<S,★>是<G,★>的子群。
在这里插入图片描述
(1)先证幺元e∈S
在这里插入图片描述
(2)再证S中任意元素均可逆
在这里插入图片描述
(3)最后证明<S,★>的封闭性,任意a,b∈S,都有a★b∈S
在这里插入图片描述
综上,<S,★>是<G,★>的子群。
练习:已知<H1,★>和<H2,★>是群<G,★>的子群,求证<H,∩H2,★>是<H1,★>、<H2,★>和<G,★>的子群。
在这里插入图片描述
(1)先证明H1∩H2是H1,H2及G的非空子集
显然H1∩H2⊆H1, H1∩H2⊆H2,
H1∩H2⊆G;
因为<H1,★>和<H2,★>是群<G,★>的子群,所以幺元e∈H1并且e∈H2,
于是e∈H1∩H2,即H1∩H2≠∅
所以H∩H2是H1、H2及G的非空子集。
(2)再证明对任意a,b∈H1∩H2,a★b-1∈H1∩H2
在这里插入图片描述
在这里插入图片描述

子群的陪集及拉格朗日定理

子群的陪集

1.定义:设<H,★>是群<G,★>的子群,a∈G,定义集合:
aH={a★h|h∈H}
Ha={h★a|h∈H}

称aH(Ha)为a确定的H在G中的左(右)陪集
我们只讨论左陪集,对于右陪集有相似的结论
在这里插入图片描述

定理1:两个陪集要么相等,要么不相交

<H,★>是群<G,★>的子群,任何a,b∈G,有
(1)aH=bH当且仅当a∈bH
(2)aH∩bH=中当且仅当a∉bH
a)必要性,已知aH=bH,因e∈H,于是a=a★e∈aH,所以a∈bH。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从上面定理可以看出:一个子群的任意两个左陪集,要么相等,要么不相交。
当a∈bH,aH=bH ;
当a∉bH,aH∩bH=∅。

定理2:a仅属于一个陪集

设<H,★>是群<G,★>的子群,对任何a∈G,a必属于且仅属于一个陪集。
在这里插入图片描述

定理3:陪集任何两个元素都不相同

设<G,★>是有限群,<H,★> 是群<G,★>的子群,b∈G,bH为<H,★>的左陪集,则bH中的任何两个元素都不相同。

(反证法,假设bH中有两个元素相同)
假设有b★h1∈bH,b★h2∈bH,(其中h1,h2∈H,h1≠h2)使得b★h1=b★h2,由可消去性有h1=h2,矛盾。所以bH中任何两个元素都不相同。

拉格朗日定理:群的阶是子群的阶的整数倍

设<G,★>是有限群,|G|=n, <H,★>是<G,★>的任意子群,|H|=m,则n=km (k∈l)
拉格朗日定理描述的内容是群的阶是子群的阶的整数倍
群的阶数指的是群中元素的个数。
在这里插入图片描述
拉格朗日定理说明:n阶群的子群阶数是群阶数的因子。
在这里插入图片描述
下面的推论1说明:
群中元素的阶数必是群阶数的因子
在这里插入图片描述

循环群

1.定义:

设<G,★>是群,如果存在一一个元素g∈G,对任意x∈G,都存在整数i,使得x=gi,则称<G,★>是循环群。并称g是G的生成元
所有的元素都可以通过其中一个元素幂指形式生成。
在这里插入图片描述
在这里插入图片描述
思考:-1是否是生成元?
在这里插入图片描述

2.循环群的类别:

根据生成元g的阶,循环群<G,★>可以分成两类:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

定理

设<G,★>是以g为生成元的有限循环群。则|G|=n
当且仅当|g|=n

在这里插入图片描述
在这里插入图片描述

循环群中生成元的个数

设<G,★>是由g生成的循环群。
(1)若G为无限循环群,则G只有两个生成元g和g-1。
(2)若G是n阶循环群,则G含有φ(n)个生成元。
对于任何正整数r,若r≤n且与n互素,
则gr是G的生成元。
φ(n)为欧拉函数,即小于或等于n且与n互素的正整数的个数。
证明:(1)若G为无限循环群,则G只有两个生成元g和g-1。

在这里插入图片描述
证明:(2)若G是n阶循环群,则G含有φ(n)个生成元
在这里插入图片描述
在这里插入图片描述
一般来说,求一个群的子群并不容易,但对于循环群,可以直接求出他的所有子群
<G,★>是由g生成的循环群,|G|=12,
小于或等于12且与12互素的正整数有4个:
1,5,7,11,即φ(12)=4。于是<G,★>有4个生成元,分别是:g,g5,g7, g11

设<G,+>, G={3a| a∈I},+是普通加法运算,则<G,+>为无限循环群,只有两个生成元: 3和-3。

循环群的子群

(1)若<G,★>循环群,则<G,*>的子群仍是循环群。.
(2)若<G,★>是无限循环群,则<G, ★>的子群除<{e},★>以外都是无限循环群。
(3)若<G,★>是n阶循环群,则对n的每个正因子d,<G,★>恰好含有一个d阶子群。

证明:(1)若<G,★>循环群,则<G,*>的子群仍是循环群
主要是找到生成元
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
设<G,★>是素数阶群,则它无非平凡子群,并且它必是循环群。
在这里插入图片描述

  • 12
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值