题目描述:
二叉树中和为某一值的路径
给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a” ,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。
示例1:
输入: 12258
输出: 5
解释: 12258有5种不同的翻译,分别是"bccfi", “bwfi”, “bczi”, “mcfi"和"mzi”
来源:力扣(LeetCode)
算法实现:
解题思路
动态规划法
动态规划一般都是先总结通式,每次计算的数据都要利用前几次计算数据,这样依次类推直到计算出答案。
通式
初始状态: dp[0] = dp[1] = 1dp[0]=dp[1]=1 ,即 “无数字” 和 “第 11 位数字” 的翻译方法数量均为 11 ;
返回值: dp[n]dp[n] ,即此数字的翻译方案数量。
改进后,不适用数组存储
空间复杂度降低,利用record1和record2记录前两次的结果,然后用于最新的一次计算
def translateNum(self, num):
"""
:type num: int
:rtype: int
"""
end=num%10
num=num//10
record1,record2=1,1
while num>0:
fre=num%10
num=num//10
if fre*10+end>25 or fre==0:
record1=record2
else:
record2,record1=record1+record2,record2
end=fre
return record2
时间复杂度:O(n) ,空间复杂度O(1)