原文 :http://www.cnblogs.com/TenosDoIt/p/3666585.html
这篇文章分析一下链表的各种排序方法。
以下排序算法的正确性都可以在LeetCode的链表排序这一题检测。本文用到的链表结构如下(排序算法都是传入链表头指针作为参数,返回排序后的头指针)
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
插入排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
class
Solution {
public
:
ListNode *insertionSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
if
(head == NULL || head->next == NULL)
return
head;
ListNode *p = head->next, *pstart =
new
ListNode(0), *pend = head;
pstart->next = head;
//为了操作方便,添加一个头结点
while
(p != NULL)
{
ListNode *tmp = pstart->next, *pre = pstart;
while
(tmp != p && p->val >= tmp->val)
//找到插入位置
{tmp = tmp->next; pre = pre->next;}
if
(tmp == p)pend = p;
else
{
pend->next = p->next;
p->next = tmp;
pre->next = p;
}
p = pend->next;
}
head = pstart->next;
delete
pstart;
return
head;
}
};
|
选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
class
Solution {
public
:
ListNode *selectSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//选择排序
if
(head == NULL || head->next == NULL)
return
head;
ListNode *pstart =
new
ListNode(0);
pstart->next = head;
//为了操作方便,添加一个头结点
ListNode*sortedTail = pstart;
//指向已排好序的部分的尾部
while
(sortedTail->next != NULL)
{
ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;
//寻找未排序部分的最小节点
while
(p != NULL)
{
if
(p->val < minNode->val)
minNode = p;
p = p->next;
}
swap(minNode->val, sortedTail->next->val);
sortedTail = sortedTail->next;
}
head = pstart->next;
delete
pstart;
return
head;
}
};
|
快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))
这里的partition我们参考数组快排partition的第二种写法(选取第一个元素作为枢纽元的版本,因为链表选择最后一元素需要遍历一遍),具体可以参考here
这里我们还需要注意的一点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:
void
quicksort(vector<
int
>&arr,
int
low,
int
high)
{
if
(low < high)
{
int
middle = mypartition(arr, low, high);
quicksort(arr, low, middle-1);
quicksort(arr, middle+1, high);
}
}
对左边子数组排序时,子数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采用前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
class
Solution {
public
:
ListNode *quickSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//链表快速排序
if
(head == NULL || head->next == NULL)
return
head;
qsortList(head, NULL);
return
head;
}
void
qsortList(ListNode*head, ListNode*tail)
{
//链表范围是[low, high)
if
(head != tail && head->next != tail)
{
ListNode* mid = partitionList(head, tail);
qsortList(head, mid);
qsortList(mid->next, tail);
}
}
ListNode* partitionList(ListNode*low, ListNode*high)
{
//链表范围是[low, high)
int
key = low->val;
ListNode* loc = low;
for
(ListNode*i = low->next; i != high; i = i->next)
if
(i->val < key)
{
loc = loc->next;
swap(i->val, loc->val);
}
swap(loc->val, low->val);
return
loc;
}
};
|
快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))
这里的partition,我们选取第一个节点作为枢纽元,然后把小于枢纽的节点放到一个链中,把不小于枢纽的及节点放到另一个链中,最后把两条链以及枢纽连接成一条链。
这里我们需要注意的是,1.在对一条子链进行partition时,由于节点的顺序都打乱了,所以得保正重新组合成一条新链表时,要和该子链表的前后部分连接起来,因此我们的partition传入三个参数,除了子链表的范围(也是前闭后开区间),还要传入子链表头结点的前驱;2.partition后链表的头结点可能已经改变
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
class
Solution {
public
:
ListNode *quickSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//链表快速排序
if
(head == NULL || head->next == NULL)
return
head;
ListNode tmpHead(0); tmpHead.next = head;
qsortList(&tmpHead, head, NULL);
return
tmpHead.next;
}
void
qsortList(ListNode *headPre, ListNode*head, ListNode*tail)
{
//链表范围是[low, high)
if
(head != tail && head->next != tail)
{
ListNode* mid = partitionList(headPre, head, tail);
//注意这里head可能不再指向链表头了
qsortList(headPre, headPre->next, mid);
qsortList(mid, mid->next, tail);
}
}
ListNode* partitionList(ListNode* lowPre, ListNode* low, ListNode* high)
{
//链表范围是[low, high)
int
key = low->val;
ListNode node1(0), node2(0);
//比key小的链的头结点,比key大的链的头结点
ListNode* little = &node1, *big = &node2;
for
(ListNode*i = low->next; i != high; i = i->next)
if
(i->val < key)
{
little->next = i;
little = i;
}
else
{
big->next = i;
big = i;
}
big->next = high;
//保证子链表[low,high)和后面的部分连接
little->next = low;
low->next = node2.next;
lowPre->next = node1.next;
//为了保证子链表[low,high)和前面的部分连接
return
low;
}
};
|
归并排序(算法交换链表节点,时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1)) 本文地址
首先用快慢指针的方法找到链表中间节点,然后递归的对两个子链表排序,把两个排好序的子链表合并成一条有序的链表。归并排序应该算是链表排序最佳的选择了,保证了最好和最坏时间复杂度都是nlogn,而且它在数组排序中广受诟病的空间复杂度在链表排序中也从O(n)降到了O(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
class
Solution {
public
:
ListNode *mergeSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//链表归并排序
if
(head == NULL || head->next == NULL)
return
head;
else
{
//快慢指针找到中间节点
ListNode *fast = head,*slow = head;
while
(fast->next != NULL && fast->next->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
fast = slow;
slow = slow->next;
fast->next = NULL;
fast = sortList(head);
//前半段排序
slow = sortList(slow);
//后半段排序
return
merge(fast,slow);
}
}
// merge two sorted list to one
ListNode *merge(ListNode *head1, ListNode *head2)
{
if
(head1 == NULL)
return
head2;
if
(head2 == NULL)
return
head1;
ListNode *res , *p ;
if
(head1->val < head2->val)
{res = head1; head1 = head1->next;}
else
{res = head2; head2 = head2->next;}
p = res;
while
(head1 != NULL && head2 != NULL)
{
if
(head1->val < head2->val)
{
p->next = head1;
head1 = head1->next;
}
else
{
p->next = head2;
head2 = head2->next;
}
p = p->next;
}
if
(head1 != NULL)p->next = head1;
else
if
(head2 != NULL)p->next = head2;
return
res;
}
};
|
冒泡排序(算法交换链表节点val值,时间复杂度O(n^2),空间复杂度O(1))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
class
Solution {
public
:
ListNode *bubbleSortList(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//链表快速排序
if
(head == NULL || head->next == NULL)
return
head;
ListNode *p = NULL;
bool
isChange =
true
;
while
(p != head->next && isChange)
{
ListNode *q = head;
isChange =
false
;
//标志当前这一轮中又没有发生元素交换,如果没有则表示数组已经有序
for
(; q->next && q->next != p; q = q->next)
{
if
(q->val > q->next->val)
{
swap(q->val, q->next->val);
isChange =
true
;
}
}
p = q;
}
return
head;
}
};
|
对于希尔排序,因为排序过程中经常涉及到arr[i+gap]操作,其中gap为希尔排序的当前步长,这种操作不适合链表。
对于堆排序,一般是用数组来实现二叉堆,当然可以用二叉树来实现,但是这么做太麻烦,还得花费额外的空间构建二叉树