深度学习
文章平均质量分 75
努力努力再努力F_
这个作者很懒,什么都没留下…
展开
-
深度前馈神经网络之深度神经网络(DNN)总结
概览多层感知机(MLP)和深度神经网络(DNN)是一样的模型,只是叫法不同。深度神经网络,卷积神经网络(CNN)都属于深度前馈神经网络(DFNN)。一、连接方式连接方式分为两种全连接,MLP采用,当前层的单元与上一层的每一个单元都有连接。稀疏连接,CNN采用,当前层的单元只与上一层的部分单元有连接。...原创 2019-03-14 19:09:45 · 7259 阅读 · 0 评论 -
LeNet-5+Mnist总结-由浅入深
一般处理思路1、定义占位符tf.placeholder()生成的变量x,y_,方便后续数据的调用;2、生成隐藏层和输出层的参数weights,biases;3、计算前向传播的结果y,average_y;4、定义交叉熵并计算平均交叉熵损失5、计算L2正则化损失函数6、总损失等于交叉熵损失和正则化损失的和7、设置衰减的学习率8、使用优化函数优化损失9、定义反向传播优化更新参数的过程...原创 2019-07-25 09:44:53 · 2311 阅读 · 0 评论 -
VGGNet+Mnist总结-由浅入深
文章目录一、经典神经网络VGGNet介绍二、经典数据集Mnist介绍三、构建网络步骤及优化操作四、源代码五、遇到问题及解决方案六、 一般处理思路一、经典神经网络VGGNet介绍在大型网络结构中,可以定义多个函数来定义卷积操作,池化操作,全连接操作,以及前向传播操作,方便简洁,例如VGGNet。VGGNet把网络分成了5段,每段都把多个3*3的卷积网络串联在一起,每段卷积后面接一个最大池化层,...原创 2019-07-27 08:10:00 · 2420 阅读 · 0 评论 -
Alexnet+Mnist总结-由浅入深
文章目录一、经典神经网络Alexnet介绍二、经典数据集Mnist介绍三、构建网络步骤及优化操作四、原代码一、经典神经网络Alexnet介绍二、经典数据集Mnist介绍三、构建网络步骤及优化操作建立一个baseline,使网络能跑起来,输出训练精度和测试精度添加dropout层,优化网络添加记录损失函数值的功能,加入损失函数的集合,观察训练效果改变keep_prob值,观察实验效果...原创 2019-07-22 08:47:54 · 1070 阅读 · 1 评论 -
深度学习之Inception模型结构全解析
文章目录CNN演变史一、Inception v1模型二、Inception v2模型三、Inception v3模型四、Inception v4模型CNN演变史卷积神经网络从Alexnet以来突破的方向就是增加网络深度和宽度的同时减少参数,但网络深度的提升会带来参数的急剧增加,会产生过拟合,计算复杂度越高;另一方面,网络越深,梯度越往后穿越容易消失(梯度弥散),难以训练和优化模型;Incept...原创 2019-07-29 08:59:04 · 8008 阅读 · 0 评论 -
深度学习之NIN模型结构全解析
文章目录一、NIN是什么MLP代替GLMGlobal Average Pooling一、NIN是什么GoogLeNet的Inception模型提出之时,其实idea是来自NIN,NIN就是Network in Network,NIN有两个特性MLP代替GLMGlobal Average Pooling转载:Network In Network 网络解析及论文解析MLP代替GLMG...原创 2019-07-29 08:54:59 · 5065 阅读 · 0 评论 -
卷积池化操作输出的尺寸大小
代码演示# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as np """Created on Tue Jul 17 10:03:21 2018@author: C.H."""tf.reset_default_graph()#这一句话非常重要,如果没有这句话,就会出现重复定义变量的错误x = tf.place...原创 2019-07-23 19:18:19 · 2804 阅读 · 0 评论 -
Tensorflow使用总结
从别处转载,若侵权,联系我,删。tensorflow函数之tf.reduce_mean和tf.reduce_sum介绍tf.app.flags Tensorflow传参数与tf.app.run()的使用python os path命令大全访问文件的状态命令os.stat...原创 2019-07-22 08:47:32 · 519 阅读 · 0 评论 -
tensorflow深度学习入门
第一,二章( CIFAR-10 图像分类)tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值shape: 一维的张量,也是输出的张量。mean: 正态分布的均值。stddev: 正态分布的标准差。dtype: 输出的类型。seed:...原创 2018-11-21 20:06:35 · 444 阅读 · 0 评论 -
cifar10图像分类总结
作为第一个认真跑过的tensorflow程序,需要总结一下github链接https://github.com/hzy46/Deep-Learning-21-Examples/tree/master/chapter_2cifar10数据处理方面tensorflow有两种数据输入方法,第一种是使用feed_dict,这种方法在画graph的时候使用placeholder来站位,在真正run...原创 2018-11-22 11:39:36 · 1474 阅读 · 0 评论 -
keras搭建cifar-10图像识别模型与MNIST手写识别模型总结
keras 用起来简单。搭建模型方便,Keras其实就是TensorFlow的接口(Keras作为前端,TensorFlow或theano作为后端),它也很灵活,且比较容易学。可以把keras看作为tensorflow封装后的一个API。MNIST使用序贯模型,导入Dense(全连接层)Dropout(),Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,...原创 2018-12-03 11:39:24 · 576 阅读 · 0 评论 -
神经网络优化的方法
一、概述二、优化网络的方法1、学习率的优化2、梯度下降的优化3、欠拟合和过拟合的优化Dropout为了防止神经网络的过拟合。它的主要思想是让隐藏层的节点在每次迭代时(包括正向和反向传播)有一定几率(keep-prob)失效。这样来预防过拟合。它主要避免对某个节点的强依赖,让反向传播的修正值可以更加平衡的分布到各个参数上(1)Dropout只发生在模型的训练阶段,预测、测试阶段则不...原创 2019-03-15 20:46:49 · 2094 阅读 · 0 评论 -
深度前馈神经网络之卷积神经网络(CNN)总结
预览卷积神经网络最主要在图像识别领域有很重要的应用,属于深度前馈神经网络范畴,卷积神经网络一般结构为输入层–卷积层–池化层–全连接层–输出层。一、输入层输入数据一般为图像,一般代表的是一张图片的像素矩阵,根据通道数的不同,图片像素矩阵有着不同的深度值,黑白图片只有一个通道,就深度为1。而彩色RGB图片有三个通道,就有深度为3。二、卷积层卷积层进行卷积操作,用卷积核将像素矩阵映射为特征矩...原创 2019-03-17 19:44:49 · 5119 阅读 · 0 评论 -
经典的卷积神经网络结构总结
概览本文将介绍几种经典的卷积神经网络模型,包括 LeNet-5,AlexNet,ResNet,VGGNet一、LeNet-5(1)模型概述模型结构第一层:输入层,输入的是32*32的黑白分辨率图像第二层:C1,卷积层,有六个特征图,卷积核大小为55,深度为 6,没有使用全0填充且步长为1,所以共有28286个神经元(32-5+1=28),参数数量为156(55*6+6=156,6为...原创 2019-07-23 08:58:10 · 11302 阅读 · 0 评论 -
TensorFlow实现自编码器及多层感知机
初始化权重不宜过大,不宜过小,权重应满足方差,均值为0,分布为高斯分布或均匀分布自编码器多层感知机原创 2019-07-12 08:58:24 · 970 阅读 · 0 评论 -
ResNet+cifar10总结-由浅入深
文章目录一、经典神经网络ResNet介绍二、经典数据集cifar10介绍及处理三、构建网络步骤及优化操作四、源代码五、遇到问题及解决方案六、 一般处理思路一、经典神经网络ResNet介绍随着神经网络(比如VGGNet16,VGGNet19)的层数不断加深,错误率也越来越低(能够提取到不同level的特征越丰富。并且,越深的网络提取的特征越抽象,越具有语义信息),但增加网络深度的同时,我们还要考...原创 2019-07-28 08:19:58 · 9568 阅读 · 0 评论