组合问题
观察这个数列:
1 3 0 2 -1 1 -2 …
这个数列中后一项总是比前一项增加2或者减少3,且每一项都为整数。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加 a 或者减少 b 的整数数列可能有多少种呢?
输入格式
共一行,包含四个整数 n,s,a,b,含义如前面所述。
4 10 2 3
输出格式
共一行,包含一个整数,表示满足条件的方案数。
2
由于这个数很大,请输出方案数除以 100000007 的余数。
/*
x, x+d1,x+d1+d2......x+d1+d2+...+dn-1
nx+(n-1)d1+(n-2)d2+(n-3)d3+....+dn-1=S
x=(s-(n-1) d1 -(n-2) d2 -...- dn-1 )/n
即s和(n-1)d1+(n-2)d2+...+ dn-1 模n的余数相同
状态表示f[i,j]
集合:只考虑前i项,且当前的总和除以n的余数是j的方案的集合
属性:count
状态计算
最后一项是+a的所有方案
f[i-1,(j-ia)%n]
最后一项是-b的所有方案
f[i-1,(j+ib)%n]
f(0,0)=1
*/
#include<iostream>
using namespace std;
const int N =1010,MOD=100000007;
int f[N][N];
int get_mod(int a,int b)//求a/b的正余数
{
return (a%b+b)%b;
}
int main(){
int n,s,a,b;
cin>>n>>s>>a>>b;
f[0][0]=1;
for(int i=1;i<n;i++){
for(int j=0;j<n;j++)
f[i][j]=(f[i-1][get_mod(j-a*(n-i),n)]+f[i-1][get_mod(j+b*(n-i),n)])%MOD;
}
cout<<f[n-1][get_mod(s,n)]<<endl;
return 0;
}