波动数列

组合问题
观察这个数列:

1 3 0 2 -1 1 -2 …

这个数列中后一项总是比前一项增加2或者减少3,且每一项都为整数。

栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加 a 或者减少 b 的整数数列可能有多少种呢?

输入格式
共一行,包含四个整数 n,s,a,b,含义如前面所述。
4 10 2 3

输出格式
共一行,包含一个整数,表示满足条件的方案数。
2
由于这个数很大,请输出方案数除以 100000007 的余数。

/*
x, x+d1,x+d1+d2......x+d1+d2+...+dn-1
nx+(n-1)d1+(n-2)d2+(n-3)d3+....+dn-1=S

x=(s-(n-1) d1 -(n-2) d2 -...-  dn-1  )/n
即s和(n-1)d1+(n-2)d2+...+ dn-1   模n的余数相同 

状态表示f[i,j] 
	集合:只考虑前i项,且当前的总和除以n的余数是j的方案的集合
	属性:count 
状态计算
	 最后一项是+a的所有方案
	 	f[i-1,(j-ia)%n] 
	 最后一项是-b的所有方案 
	 	f[i-1,(j+ib)%n] 
f(0,0)=1
*/

#include<iostream>
using namespace std;
const int N =1010,MOD=100000007;
int f[N][N];

int get_mod(int a,int b)//求a/b的正余数 
{
	return (a%b+b)%b;
}
int main(){
	int n,s,a,b;
	cin>>n>>s>>a>>b;
	f[0][0]=1;
	for(int i=1;i<n;i++){
		for(int j=0;j<n;j++)
			f[i][j]=(f[i-1][get_mod(j-a*(n-i),n)]+f[i-1][get_mod(j+b*(n-i),n)])%MOD;
	}
	cout<<f[n-1][get_mod(s,n)]<<endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值