游戏厅
问题描述
虚拟现实游戏的火爆导致在魔法学院附近出现了许多的游戏厅。虽然如此,但由于学院的学员众多(<= 3000),所以抢到游戏机玩的难度非常之大。学院到游戏厅的路是错综复杂的,以至于到一个自己想去的游戏厅都有非常多的线路可以选择,而路线的长度又不相同,这样就决定了要花费的时间,因此想要尽快到达,选择一条最佳的线路是很有必要的。
为了简化问题,我们把学院与周边的游戏厅看做图中的顶点,学校与游戏厅,游戏厅与游戏厅之间的线路看作边,每个边都有一个权,表示我们走完这条路的时间,由于放学人流量大,如果反向走会比较危险,因此这是一个有向图。设学院在S点,想要去的游戏厅在T点。你的任务就是选择一条最佳路线,是的从学校到目的地游戏厅的时间最短,你只需输出最短到达时间即可。
输入文件
输入文件共有M+2行数据,第一行两个整数N、M,表示点数和边数。
然后M行每行3个正整数(u,v,t),表示有一条可由u到v耗时为t的边。最后一行两个正整数S,T。
输出文件
输出文件只要一行,一个整数表示最短时间。如果S,T之间不存在通路,则输出“No Solution!”(双引号不输出,“!”为西文标点)
输入样例
4 4
1 2 3
2 4 10
1 3 5
3 4 5
1 4
输出样例
10
数据规模
对于30%的数据保证有1<N<=1000,1<=M<=1000;
对于全部的数据保证有1<N<=10000,1<=M<=100000。
算法分析
采用前向星+Bellman-ford即可
前向星表示法是把所有的边集中在一起形成一个边列表,比如说表示第i条边(u,v)=w就应当分别把起点、终点、权值存在三个数组中但下标相同。星形表示法分为前向心和后向星。前向星按照起始点从小到大排序,前向星的好处是比链表节省时间和空间,只要不增加或者删除边,就能很快找到从一个点出发的所有边。除了不能直接用起点终点定位以外,前向星几乎是完美的。
例如有一个图结点有100000个,普通的矩阵存图存的即使100000×100000。而前向星是保存边,一共定义三个数组a[i]、b[i]和e[i],它们分别表示第i条边的起点编号、第i条边的终点编号、第i条边的权值。
于是我们可以就可以这样读数据:
cin >> n >> m;
for(int i = 1; i <= m; i++)
cin >> a[i] >> b[i] >> e[i];
然后对数组a进行排序,即sort(a+1,a+m+1),为的是让这些起始编号有序(让终止编号有序也可以,不过一般都是排起始编号)。
这就是前向星了,结构非常简单,空间复杂度视边的个数(也就是m)而定。
采用前向星表示法,设三个数组x,y,e,分别保存每条边的起点编号、终点编号和所需的时间(权值),再设一个数组d保存到该点的最短时间,输入要查询线路s,t,首先令要查询那条边的起点的时间为0,即d[s] = 0,令其他点的时间为最大值,通过循环判断,替换每个点的最短时间,最后判断要查询该线路的终点标号最短路时间是否为最大值,如果为最大值,则不存在通路,否则就输出最短路径。
#include <iostream>
#include <string.h>
#include <string>
#include <set>
#include <stack>
#include <algorithm>
using namespace std;
int x[10000+1], y[10000+1], e[10000+1];//分别保存每条边的起点,终点以及相应的时间
int d[10000+1];//保存每个点的最短时间
int n, m, s, t;//点的个数,边的条数,查询边的起点编号和终点编号
void init(){
cin >> n >> m;
int i;
for(i = 1; i <= m; i++){
cin >> x[i] >> y[i] >> e[i];
}
sort(x+1, x+m+1);//对数组x排序,使得起始编号有序
cin >> s >> t;
}
void bellman_ford(int s){
int i, j;
for(i = 1; i <= n; i++){
d[i] = INT_MAX;
}
d[s] = 0;
for(i = 1; i <= n; i++){
for(j = 1; j <= m; j++){
if(d[x[j]] != INT_MAX && d[y[j]] > d [x[j]] + e[j])//判断终点的时间是否大于起点时间加上该边的时间,如果是就替换(替换最短到达时间)
d[y[j]] = d[x[j]] + e[j];
}
}
if(d[t] != INT_MAX)
cout << d[t] << endl;
else//如果查询边的终点最短时间为最大值则不存在通路
cout << "No Solution!" << endl;
}
int main(){
init();
bellman_ford(s);
system("pause");
return 0;
}