【高中数学选修2-3】排列,组合,二项式定理,杨辉三角

1.排列

1.1什么是排列?

排列,一般地,从n个不同元素中取出m(m≤n)个元素,然后按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。特别地,当m=n时,这个排列被称作全排列。

排列问题一定和顺序相关的

1.2什么是排列数?

从n个不同的元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号 A n m A^m_n Anm表示。

1.3排列数公式

排列数公式1

A n m = n ( n − 1 ) ( n − 2 ) . . . . . . ( n − m + 1 ) A^m_n=n(n-1)(n-2)......(n-m+1) Anm=n(n1)(n2)......(nm+1)

排列数公式2

A n m = n ! ( n − m ) ! A^m_n=\frac{n!}{(n-m)!} Anm=(nm)!n!

2.组合

2.1什么是组合?

2.1.1排列与组合不同点

排列组合
从n个不同元素中选出m个从n个不同元素中选出m个
考虑顺序不考虑顺序
A n m = n ! ( n − m ) ! A^m_n=\frac{n!}{(n-m)!} Anm=(nm)!n! C n m = n ! m ! ( n − m ) ! C^m_n=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

在这里插入图片描述

2.2组合数

组合有多少种→组合数 C n m C^m_n Cnm

m:取出的元素个数

n:总元素个数

2.3组合数公式

组合数公式一

C n m = A n m A m m = n ( n − 1 ) ( n − 2 ) . . . ( n − m + 1 ) m ! C^m_n=\frac{A^m_n}{A^m_m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} Cnm=AmmAnm=m!n(n1)(n2)...(nm+1)

组合数公式二

C n m = A n m A m m = n ! m ! ( n − m ) ! C^m_n=\frac{A^m_n}{A^m_m}=\frac{n!}{m!(n-m)!} Cnm=AmmAnm=m!(nm)!n!

2.4组合数的两个重要性质

组合数性质一

在这里插入图片描述

C n m = C n n − m C^m_n=C^{n-m}_n Cnm=Cnnm

组合数性质二

在这里插入图片描述

C n m + C n m − 1 = C n + 1 m C^m_n+C^{m-1}_n=C^m_{n+1} Cnm+Cnm1=Cn+1m

3.二项式定理

3.1问题?

n ∈ N ∗ n∈N^* nN时, ( a + b ) n = ? (a+b)^n=? (a+b)n=?

在这里插入图片描述

3.2二项式定理公式

( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . + C n n b n ( n ∈ N ∗ ) (a+b)^n=C^0_na^n+C^1_na^{n-1}b+C^2_na^{n-2}b^2+...+C^n_nb^n(n∈N^*) (a+b)n=Cn0an+Cn1an1b+Cn2an2b2+...+Cnnbn(nN)

3.3二项式定理的四个小概念

概念1:二项式展开式 等号右边的多项式

概念2:二项式系数 C n r ( r = 0 , 1 , 2 , . . . , n ) C^r_n(r=0,1,2,...,n) Cnr(r=0,1,2,...,n)

概念3:二项展开式的通项 C n r a n − r b r C^r_na^{n-r}b^r Cnranrbr

概念4:通项公式 T r + 1 = C n r a n − r b r ( 0 ≤ r ≤ n , r ∈ N , n ∈ N ∗ ) T_{r+1}=C^r_na^{n-r}{b^r}(0≤r≤n,r∈N,n∈N^*) Tr+1=Cnranrbr(0rn,rN,nN)

4.杨辉三角

4.1杨辉三角与组合数的关系

在这里插入图片描述

  1. 左右两侧斜线都是1** C n 0 = C n n = 1 C^0_n=C^n_{n}=1 Cn0=Cnn=1

  2. 其他数等于其左上角与右上角两数之和 C n m − 1 + C n m = C n + 1 m C^{m-1}_n+C^m_n=C^m_{n+1} Cnm1+Cnm=Cn+1m

  3. 在这里插入图片描述

4.2二项式系数的性质

  1. 对称性:与首未两端“等距离”的两个二项式系数相等
  2. 当n是偶数时,中间一项取最大值。n是奇数时,中间两项相等,同时取最大值。
  3. ( a + b ) n (a+b)^n (a+b)n展开式各个二项式系数的和为** 2 n 2^n 2n**

C n 0 + C n 1 + C n 2 + . . . + C n n = 2 n C^0_n+C^1_n+C^2_n+...+C^n_n=2^n Cn0+Cn1+Cn2+...+Cnn=2n

  1. ( a + b ) n (a+b)^n (a+b)n展开式中奇数项的二项式系数的和等于偶数项的二项式系数之和

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值