文章目录
1.排列
1.1什么是排列?
排列,一般地,从n个不同元素中取出m(m≤n)个元素,然后按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。特别地,当m=n时,这个排列被称作全排列。
排列问题一定和顺序相关的
1.2什么是排列数?
从n个不同的元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号 A n m A^m_n Anm表示。
1.3排列数公式
排列数公式1
A n m = n ( n − 1 ) ( n − 2 ) . . . . . . ( n − m + 1 ) A^m_n=n(n-1)(n-2)......(n-m+1) Anm=n(n−1)(n−2)......(n−m+1)
排列数公式2
A n m = n ! ( n − m ) ! A^m_n=\frac{n!}{(n-m)!} Anm=(n−m)!n!
2.组合
2.1什么是组合?
2.1.1排列与组合不同点
排列 | 组合 |
---|---|
从n个不同元素中选出m个 | 从n个不同元素中选出m个 |
考虑顺序 | 不考虑顺序 |
A n m = n ! ( n − m ) ! A^m_n=\frac{n!}{(n-m)!} Anm=(n−m)!n! | C n m = n ! m ! ( n − m ) ! C^m_n=\frac{n!}{m!(n-m)!} Cnm=m!(n−m)!n! |
2.2组合数
组合有多少种→组合数 C n m C^m_n Cnm
m:取出的元素个数
n:总元素个数
2.3组合数公式
组合数公式一
C n m = A n m A m m = n ( n − 1 ) ( n − 2 ) . . . ( n − m + 1 ) m ! C^m_n=\frac{A^m_n}{A^m_m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} Cnm=AmmAnm=m!n(n−1)(n−2)...(n−m+1)
组合数公式二
C n m = A n m A m m = n ! m ! ( n − m ) ! C^m_n=\frac{A^m_n}{A^m_m}=\frac{n!}{m!(n-m)!} Cnm=AmmAnm=m!(n−m)!n!
2.4组合数的两个重要性质
组合数性质一
C n m = C n n − m C^m_n=C^{n-m}_n Cnm=Cnn−m
组合数性质二
C n m + C n m − 1 = C n + 1 m C^m_n+C^{m-1}_n=C^m_{n+1} Cnm+Cnm−1=Cn+1m
3.二项式定理
3.1问题?
当 n ∈ N ∗ n∈N^* n∈N∗时, ( a + b ) n = ? (a+b)^n=? (a+b)n=?
3.2二项式定理公式
( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . + C n n b n ( n ∈ N ∗ ) (a+b)^n=C^0_na^n+C^1_na^{n-1}b+C^2_na^{n-2}b^2+...+C^n_nb^n(n∈N^*) (a+b)n=Cn0an+Cn1an−1b+Cn2an−2b2+...+Cnnbn(n∈N∗)
3.3二项式定理的四个小概念
概念1:二项式展开式 等号右边的多项式
概念2:二项式系数 C n r ( r = 0 , 1 , 2 , . . . , n ) C^r_n(r=0,1,2,...,n) Cnr(r=0,1,2,...,n)
概念3:二项展开式的通项 C n r a n − r b r C^r_na^{n-r}b^r Cnran−rbr
概念4:通项公式 T r + 1 = C n r a n − r b r ( 0 ≤ r ≤ n , r ∈ N , n ∈ N ∗ ) T_{r+1}=C^r_na^{n-r}{b^r}(0≤r≤n,r∈N,n∈N^*) Tr+1=Cnran−rbr(0≤r≤n,r∈N,n∈N∗)
4.杨辉三角
4.1杨辉三角与组合数的关系
-
左右两侧斜线都是1** C n 0 = C n n = 1 C^0_n=C^n_{n}=1 Cn0=Cnn=1
-
其他数等于其左上角与右上角两数之和 C n m − 1 + C n m = C n + 1 m C^{m-1}_n+C^m_n=C^m_{n+1} Cnm−1+Cnm=Cn+1m
-
4.2二项式系数的性质
- 对称性:与首未两端“等距离”的两个二项式系数相等
- 当n是偶数时,中间一项取最大值。n是奇数时,中间两项相等,同时取最大值。
- ( a + b ) n (a+b)^n (a+b)n展开式各个二项式系数的和为** 2 n 2^n 2n**
C n 0 + C n 1 + C n 2 + . . . + C n n = 2 n C^0_n+C^1_n+C^2_n+...+C^n_n=2^n Cn0+Cn1+Cn2+...+Cnn=2n
- ( a + b ) n (a+b)^n (a+b)n展开式中奇数项的二项式系数的和等于偶数项的二项式系数之和