多重背包

    一、我们之前写过完全背包,这个多重背包可以类似完全背包的暴力写法,只不过每个物品的数量是有限的。所以,第一种方法:我们定义阶段,最外层循环的每一个物品i为一个阶段,定义状态为f【i】【j】表示当到达第i个物品空间为j时所能达到的最大价值。然后我们枚举每一个决策k,k代表第i个物品我们用多少个,来更新最优值。复杂O(n*m*k)

        二、之前O(n)的枚举决策k显然没有必要,我们可以用二进制拆分来优化。复杂度O(n*m*log k)

        三、单调队列优化dp。这个思路我是真想不出来,不过看了题解之后也可以手动推一下式子然后敲一下代码。简单来说就是我们尝试把原本的状态转移方程拆一下,变成两个部分,其中一个可以看做定值。并且我们可以证明在这些决策当中,上下界的变化具有单调性,那么我们可以用单调队列来维护最优决策。

         对于这道题来时,简单的状态转移方程是f【j】=max{f【j-k*v【i】】+w【i】*k} 其中k∈【0,c【i】】。对于这个方程来说,i的值是固定的,并且我们发现,j每次都是由前k*v【i】转移过来的。我们设j%v【i】的余数为u,p=(j-u)/v[i],f【u+p*v【i】】=max{ f【u+k*v【i】】+(p-k)*w【i】 };然后我们就可以不再枚举j,直接枚举u,然后枚举p,每一次p-1的时候,最优决策只会在前端-1,后端+1,所以整个复杂度是O(nm)的。

#include<bits/stdc++.h>
using namespace std;
int n,m,w[1100],v[1100],c[1100],f[1100];
int q[1100],l,r;
int calc(int i,int u,int k)
{
	return f[u+k*v[i]]-k*w[i];
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) scanf("%d%d%d",&v[i],&w[i],&c[i]);
	memset(f,0xcf,sizeof(f));
	f[0]=0;
	for(int i=1;i<=n;i++){
		for(int u=0;u<v[i];u++){
			l=1,r=0;
			int maxp=(m-u)/v[i];
			for(int k=maxp-1;k>=max(0,maxp-c[i]);k--){
				while(l<=r&&calc(i,u,q[r])<=calc(i,u,k)) r--;
				q[++r]=k;
			}
			for(int p=maxp;p>=0;p--){
				while(l<=r&&q[l]>p-1) l++;
				if(l<=r)
				f[u+p*v[i]]=max(f[u+p*v[i]],calc(i,u,q[l])+w[i]*p);
				if(p-c[i]-1>=0){
					while(l<=r&&calc(i,u,q[r])<=calc(i,u,p-c[i]-1)) r--;
					q[++r]=p-c[i]-1;
				}
			}
		}
	}
	int ans=0;
	for(int i=1;i<=m;i++) ans=max(ans,f[i]);
	printf("%d\n",ans);
	return 0;
}

 

### 多重背包问题的解决方案 多重背包问题是经典的背包问题之一,其核心思想是将每种物品的数量限制考虑进去,在不超过背包容量的前提下最大化价值总和。以下是关于多重背包问题的具体实现方法。 #### 动态规划的核心概念 动态规划是一种常用的优化技术,用于解决具有最优子结构的问题。对于多重背包问题,可以通过将其转化为更简单的形式来简化计算过程。具体来说,可以采用二进制拆分或者单调队列优化的方式来减少时间复杂度[^2]。 #### 转化为0/1背包问题 一种常见的做法是将多重背包问题分解成多个独立的0/1背包问题实例。例如,如果某种物品最多可以选择k次,则可以将这种物品分成若干组,使得每一组对应于不同的取值次数(如1, 2, 4...直到接近k)。这样做的好处是可以显著降低状态空间大小,从而提升运行效率。 #### 状态转移方程 设`dp[i][j]`表示前i件物品放入容量为j的背包所能获得的最大价值,则状态转移方程如下: 当不选第i件物品时: `dp[i][j] = dp[i-1][j]` 当选取一定数量的第i件物品时(假设当前可选取数目为t): `dp[i][j] = max(dp[i][j], dp[i-1][j-t*weight[i]] + t*value[i])` 其中`t`满足条件 `t * weight[i] <= j && t <= count[i]` ,这里`count[i]`代表第i类物品的实际可用数量。 #### Java代码示例 下面是一个基于上述原理的Java程序实现: ```java public class MultipleKnapsack { public static int knapsack(int[] weights, int[] values, int[] counts, int capacity) { int n = weights.length; int[][] dp = new int[n + 1][capacity + 1]; for (int i = 1; i <= n; ++i) { for (int w = 0; w <= capacity; ++w) { dp[i][w] = dp[i - 1][w]; for (int k = 1; k <= counts[i - 1]; ++k) { // 遍历可能的选择数 if (weights[i - 1] * k > w) break; dp[i][w] = Math.max(dp[i][w], dp[i - 1][w - k * weights[i - 1]] + k * values[i - 1]); } } } return dp[n][capacity]; } public static void main(String[] args) { int[] weights = {2, 3, 4}; int[] values = {3, 4, 5}; int[] counts = {2, 3, 1}; // 各自对应的数量 int capacity = 7; System.out.println(knapsack(weights, values, counts, capacity)); // 输出最大价值 } } ``` 此代码片段展示了如何通过嵌套循环遍历所有可能性并更新DP表项以找到最佳解法[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值