一、我们之前写过完全背包,这个多重背包可以类似完全背包的暴力写法,只不过每个物品的数量是有限的。所以,第一种方法:我们定义阶段,最外层循环的每一个物品i为一个阶段,定义状态为f【i】【j】表示当到达第i个物品空间为j时所能达到的最大价值。然后我们枚举每一个决策k,k代表第i个物品我们用多少个,来更新最优值。复杂O(n*m*k)
二、之前O(n)的枚举决策k显然没有必要,我们可以用二进制拆分来优化。复杂度O(n*m*log k)
三、单调队列优化dp。这个思路我是真想不出来,不过看了题解之后也可以手动推一下式子然后敲一下代码。简单来说就是我们尝试把原本的状态转移方程拆一下,变成两个部分,其中一个可以看做定值。并且我们可以证明在这些决策当中,上下界的变化具有单调性,那么我们可以用单调队列来维护最优决策。
对于这道题来时,简单的状态转移方程是f【j】=max{f【j-k*v【i】】+w【i】*k} 其中k∈【0,c【i】】。对于这个方程来说,i的值是固定的,并且我们发现,j每次都是由前k*v【i】转移过来的。我们设j%v【i】的余数为u,p=(j-u)/v[i],f【u+p*v【i】】=max{ f【u+k*v【i】】+(p-k)*w【i】 };然后我们就可以不再枚举j,直接枚举u,然后枚举p,每一次p-1的时候,最优决策只会在前端-1,后端+1,所以整个复杂度是O(nm)的。
#include<bits/stdc++.h>
using namespace std;
int n,m,w[1100],v[1100],c[1100],f[1100];
int q[1100],l,r;
int calc(int i,int u,int k)
{
return f[u+k*v[i]]-k*w[i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d%d%d",&v[i],&w[i],&c[i]);
memset(f,0xcf,sizeof(f));
f[0]=0;
for(int i=1;i<=n;i++){
for(int u=0;u<v[i];u++){
l=1,r=0;
int maxp=(m-u)/v[i];
for(int k=maxp-1;k>=max(0,maxp-c[i]);k--){
while(l<=r&&calc(i,u,q[r])<=calc(i,u,k)) r--;
q[++r]=k;
}
for(int p=maxp;p>=0;p--){
while(l<=r&&q[l]>p-1) l++;
if(l<=r)
f[u+p*v[i]]=max(f[u+p*v[i]],calc(i,u,q[l])+w[i]*p);
if(p-c[i]-1>=0){
while(l<=r&&calc(i,u,q[r])<=calc(i,u,p-c[i]-1)) r--;
q[++r]=p-c[i]-1;
}
}
}
}
int ans=0;
for(int i=1;i<=m;i++) ans=max(ans,f[i]);
printf("%d\n",ans);
return 0;
}