传送门
Description
You are given a matrix of size
n
×
n
n×n
n×n filled with lowercase English letters. You can change no more than
k
k
k letters in this matrix.
Consider all paths from the upper left corner to the lower right corner that move from a cell to its neighboring cell to the right or down. Each path is associated with the string that is formed by all the letters in the cells the path visits. Thus, the length of each string is
2
n
−
1
2n−1
2n−1.
Find the lexicographically smallest string that can be associated with a path after changing letters in at most
k
k
k cells of the matrix.
A string
a
a
a is lexicographically smaller than a string
b
b
b, if the first different letter in
a
a
a and
b
b
b is smaller in
a
a
a.
大意就是给你一个
n
×
n
n×n
n×n的小写字符方阵,可以更改不超过k位,求一条字典序最小的最短路径。
Input
The first line contains two integers
n
n
n and
k
k
k (
1
≤
n
≤
2000
1≤n≤2000
1≤n≤2000,
0
≤
k
≤
n
2
0≤k≤n^{2}
0≤k≤n2) — the size of the matrix and the number of letters you can change.
Each of the next
n
n
n lines contains a string of
n
n
n lowercase English letters denoting one row of the matrix.
Output
Output the lexicographically smallest string that can be associated with some valid path after changing no more than k k k letters in the matrix.
Example
Input#1
4 2
abcd
bcde
bcad
bcde
Output#1
aaabcde
Input#2
5 3
bwwwz
hrhdh
sepsp
sqfaf
ajbvw
Output#2
aaaepfafw
Input#3
7 6
ypnxnnp
pnxonpm
nxanpou
xnnpmud
nhtdudu
npmuduh
pmutsnz
Output#3
aaaaaaadudsnz
Note
In the first sample test case it is possible to change letters ‘b’ in cells ( 2 , 1 ) (2,1) (2,1) and ( 3 , 1 ) (3,1) (3,1) to ‘a’, then the minimum path contains cells ( 1 , 1 ) (1,1) (1,1), ( 2 , 1 ) (2,1) (2,1), ( 3 , 1 ) (3,1) (3,1), ( 4 , 1 ) (4,1) (4,1), ( 4 , 2 ) (4,2) (4,2), ( 4 , 3 ) (4,3) (4,3), ( 4 , 4 ) (4,4) (4,4). The first coordinate corresponds to the row and the second coordinate corresponds to the column.
Hint
time limit per test: 1.5 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output
Solution
- 计算从 ( 1 , 1 ) (1,1) (1,1)到该点经过的最多’a’的个数,对于小于k个的,直接改为’a’
- 枚举步数和每一步会走到的点,贪心地取即可
Code
//Beginner_df016
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int read(){
int x=0; bool f=0; char ch=getchar();
while (ch<'0' || ch>'9'){if (ch=='-') f=1; ch=getchar();}
while (ch>='0' && ch<='9'){x=(x<<1)+(x<<3)+ch-48; ch=getchar();}
return (f)?-x:x;
}
const int N=2007;
const int Inf=1e7+7;
int n,k,tot,top,f[N][N];
char a[N][N],ans[N<<1];
bool p[N][N];
int main(){
n=read(); k=read();
for (int i=0;i<n;++i) scanf("%s",a[i]);
if (k>=2*n-1){
for (int i=1;i<2*n;++i) putchar('a');
printf("\n");
return 0;
}
for (int i=0;i<n;++i)
for (int j=0;j<n;++j) f[i][j]=Inf;
f[0][0]=1;
if (a[0][0]=='a') f[0][0]--;
for (int i=0;i<n;++i)
for (int j=0;j<n;++j){
if (f[i][j]<=k) a[i][j]='a';
f[i+1][j]=min(f[i+1][j],f[i][j]+(a[i+1][j]=='a'?0:1));
f[i][j+1]=min(f[i][j+1],f[i][j]+(a[i][j+1]=='a'?0:1));
}
for (int i=0;i<2*n-1;++i){
char minn='z';
int t=min(n,i+1);
for (int x=max(0,i-n+1);x<t;++x){
int y=i-x;
if ((x==0 && y==0) || (x>0 && p[x-1][y]) || (y>0 && p[x][y-1]))
minn=min(minn,a[x][y]);
}
for (int x=max(0,i-n+1);x<t;++x){
int y=i-x;
if (((x==0 && y==0) || (x>0 && p[x-1][y]) || (y>0 && p[x][y-1])) && a[x][y]==minn)
p[x][y]=1;
}
ans[++tot]=minn;
}
for (int i=1;i<=tot;++i) putchar(ans[i]);
printf("\n");
return 0;
}