模型除了从数据划分的角度来评估,我上一篇文章介绍了数据集划分的角度:
【机器学习300问】24、模型评估的常见方法有哪些?https://blog.csdn.net/qq_39780701/article/details/136334526
还可以从一些指标的角度来评估,这篇文章就带大家从两个最经典的任务场景介绍。
一、回归问题
(1)MSE(Mean Squared Error,均方误差)
MSE衡量的是预测值与真实值之间差别的平方平均数。公式为:
模型除了从数据划分的角度来评估,我上一篇文章介绍了数据集划分的角度:
【机器学习300问】24、模型评估的常见方法有哪些?https://blog.csdn.net/qq_39780701/article/details/136334526
还可以从一些指标的角度来评估,这篇文章就带大家从两个最经典的任务场景介绍。
MSE衡量的是预测值与真实值之间差别的平方平均数。公式为: