PyTorch知识要点复习,目的是为了巩固PyTorch基础、快速回顾、深化理解PyTorch框架。这篇文章会持续更新。
一、本文的一些说明
-
知识点梳理:我将PyTorch的核心概念和高级技巧进行了系统化的整理,从基础的张量操作到复杂的模型构建与训练。这样的梳理旨在帮助构建起完整的知识框架,避免在日后的项目实践中因遗忘而迷茫。
-
个人思维导图笔记风格:采用“思维导图笔记回想”方式撰写,每一部分都是我自己在学习过程中做的思维导图笔记,注重理解。能让我在回顾时能迅速唤醒记忆。所以笔记中大部分是知识都是点到即止,帮助我回忆即可,更加详细的内容自己去查资料就行。
-
速查手册设计:内容设计成易于查询的格式。无论是查找特定函数的用法、理解某个概念的深层含义,都能直接找到答案,节省时间。
二、本文计划书写内容
-
Tensor基础:深入浅出地介绍PyTorch的核心——Tensor,包括创建、操作、GPU迁移等。
-
自动微分与梯度计算:解析PyTorch的自动微分机制,理解如何利用
backward()
进行反向传播,掌握梯度管理技巧。 -
<