4, 数状数组,单点更新+区间查询;

A - Ultra-QuickSort

其实我好好想了一下树状数组到底可以干什么呢它可以统计在某一个数字出现的时候,在它之前有多少个已经出现
并且比他小的数字个数,也可以是比它小的数字和,如果是个数的话就是在离散化的下标后向后单点更新1,如果是

想要求算比它小的数字的和的话就是在离散化下标后向后数值更新;

奶牛排序两者全都考察到了;

https://cn.vjudge.net/contest/234987#status/16110581005/S/0/

https://cn.vjudge.net/contest/234987#problem/A

昨天又把树状数组看了一下,觉得就是统计出现的数字的个数,求逆序对就是这个的典型例题

并且经过这道题目我也把什么是离散化好好的给弄懂了;

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
const  int Max = 1e6+5;
long long a[Max],b[Max];
int lowbit(int x)
{
   return x&(-x);
}
int n;
long long c[Max];
void add(int x,int num)
{
   while(x<=n)
   {
      c[x]+=num;
      x+=lowbit(x);
   }
}
long long query(int x)
{
  long long s=0;
  while(x>=1)
  {
    s+=c[x];
    x-=lowbit(x);
  }
  return s;
}
int du[Max];
int main()
{
  while(scanf("%d",&n)!=EOF&&n)
  {
    for(int i=1;i<=n;i++)
  {
   scanf("%lld",&a[i]);
   b[i]=a[i];
  }
  sort(b+1,b+1+n);
  for(int i=1;i<=n;i++)
  {
    a[i]=lower_bound(b+1,b+1+n,a[i])-b;
  }//离散化处理;
  memset(c,0,sizeof(c));
  memset(du,0,sizeof(du));
  long long sum=0;
  for(int i=n;i>=1;i--)
  {
      du[a[i]]++;//防止相等的数也被数成是逆序对所以要把它给剪掉;
      //5 5 5 4 4这种情况;
      add(a[i],1);
      sum+=query(a[i])-du[a[i]];
  }
  printf("%lld\n",sum);
  }
  return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值