网络流——最大流【模版】&费用流【模版】

最大流模版

题目大意:

给出一个网络图,以及其源点和汇点,求出其网络最大流。

解题思路:

Dinic

Accepted code:

#include<cstring>
#include<cstdio>
#include<queue>
#define inf 1e9
using namespace std;
queue<int> q;
int n,m,s,t,cnt,x,y,w,dis[10001],last[200001];
struct node{
	int to,c,next;
}e[200001];
void add(int x,int y,int w)//邻接表
{
	e[++cnt].to=y;e[cnt].c=w;e[cnt].next=last[x];last[x]=cnt;
	e[++cnt].to=x;e[cnt].c=0;e[cnt].next=last[y];last[y]=cnt;
}
bool bfs()//找增广路,建立分层图
{
	memset(dis,-1,sizeof(dis));//初始化
	while (q.size()) q.pop();//初始化(清空队列)
	dis[s]=0; q.push(s);//初始化
	while (q.size())
	{
		int u=q.front(); q.pop();//取出队列第一个并弹出
		for (int i=last[u];~i;i=e[i].next)//"~i" = "i!=-1"
		if (e[i].c&&dis[e[i].to]==-1)
		//如果这条边容量没满并且它的到达的点并没有找过就分层
		{
			dis[e[i].to]=dis[u]+1;//分层
			if (e[i].to==t) return 1;//找到增广路就不用继续找了
			q.push(e[i].to);//入队
		}
	}
	return 0;
}
int dfs(int x,int maxf)
{
	if (x==t||!maxf) return maxf;
	//如果已经到了汇点或者没有剩余流量就退出,返回剩余流量
	int rest=0;
	for (int i=last[x];~i;i=e[i].next)
	if (e[i].c&&dis[x]+1==dis[e[i].to])
	//如果还有容量并且e[i].to是x的下一层就进入
	{
		int f=dfs(e[i].to,min(e[i].c,maxf-rest));
		//往下搜
		if (!f) dis[e[i].to]=-1;
		//找不下去了(到汇点或没有剩余流量)就标记
		rest+=f;//使用流量也要加
		e[i].c-=f;
		e[i^1].c+=f;//改变流量
	}
	if (!rest) dis[x]=-1;//如果根本没用流量就标记
	return rest;
}
int dinic()
{
	int ans=0;//初始化计数器
	while (bfs()) //找增广路并建立分层图
	 ans+=dfs(s,inf); //改流量并统计
	return ans; //返回最终答案
}
int main()
{
	memset(last,-1,sizeof(last));
	cnt=-1;//初始化
	scanf("%d%d%d%d",&n,&m,&s,&t);
	for (int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&x,&y,&w);
		add(x,y,w);//建图
	}
	printf("%d",dinic());//直接dinic
}

费用流模版

题目大意:

给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

解题思路:

Spfa + 统计

Accepted code:

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=100050;
const int inf=1e9;
int n,m,cnt,last[5001],S,T,dis[5001],vis[5001],pre[5001],ans,sum,cf[5001];
struct node{int from,to,c,w,next;}e[100050];
queue<int> que;
void add(int u,int v,int c,int w)//邻接表
{
    e[++cnt].from=u;
    e[cnt].to=v;
    e[cnt].c=c;
    e[cnt].w=w;
    e[cnt].next=last[u];
    last[u]=cnt;
    e[++cnt].from=v;
    e[cnt].to=u;
    e[cnt].c=0;
    e[cnt].w=-w;
    e[cnt].next=last[v];
    last[v]=cnt;
}
bool spfa()//spfa最短路不解释
{
    for (int i=1;i<=n;i++) dis[i]=inf;
    dis[S]=0;que.push(S);vis[S]=1;cf[S]=inf;
    while (!que.empty())
    {
        int u=que.front();que.pop();
        for (int i=last[u];~i;i=e[i].next)
         if (e[i].c&&dis[u]+e[i].w<dis[e[i].to])
         {
        	dis[e[i].to]=dis[u]+e[i].w;
        	cf[e[i].to]=min(cf[u],e[i].c);
            pre[e[i].to]=i;
            if (!vis[e[i].to])  
             vis[e[i].to]=1,que.push(e[i].to);
         }
        vis[u]=0;
    }
    return dis[T]<inf;
    //如果到了汇点就说明找到增广路并且这条增广路是最小费用
}
void mcf()
{
    int x=T;
    sum+=cf[T];//统计流量
    ans+=dis[x]*cf[T];//统计费用
    while (pre[x])//从后往前改流量
    {
        e[pre[x]].c-=cf[T];
        e[pre[x]^1].c+=cf[T];
        x=e[pre[x]].from;
    }
}
int main()
{
    cnt=-1;
    memset(last,-1,sizeof(last));//初始化
    scanf("%d%d%d%d",&n,&m,&S,&T);
    int u,v,w,f;
    for (int i=1;i<=m;i++)
     scanf("%d%d%d%d",&u,&v,&w,&f),add(u,v,w,f);
    while (spfa()) mcf();
    printf("%d %d",sum,ans);//愉快输出
}

后记:

解题思路写的短不是因为我懒,是因为这两题都是模版题,并没有什么特别的地方好讲,只要明白最大流&费用流这两题就能做出来,不像假期的宿舍,建边什么的比这些复杂,这个套一个模版的事情不想多说,没有什么必要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值