最大流模版
题目大意:
给出一个网络图,以及其源点和汇点,求出其网络最大流。
解题思路:
Dinic
Accepted code:
#include<cstring>
#include<cstdio>
#include<queue>
#define inf 1e9
using namespace std;
queue<int> q;
int n,m,s,t,cnt,x,y,w,dis[10001],last[200001];
struct node{
int to,c,next;
}e[200001];
void add(int x,int y,int w)//邻接表
{
e[++cnt].to=y;e[cnt].c=w;e[cnt].next=last[x];last[x]=cnt;
e[++cnt].to=x;e[cnt].c=0;e[cnt].next=last[y];last[y]=cnt;
}
bool bfs()//找增广路,建立分层图
{
memset(dis,-1,sizeof(dis));//初始化
while (q.size()) q.pop();//初始化(清空队列)
dis[s]=0; q.push(s);//初始化
while (q.size())
{
int u=q.front(); q.pop();//取出队列第一个并弹出
for (int i=last[u];~i;i=e[i].next)//"~i" = "i!=-1"
if (e[i].c&&dis[e[i].to]==-1)
//如果这条边容量没满并且它的到达的点并没有找过就分层
{
dis[e[i].to]=dis[u]+1;//分层
if (e[i].to==t) return 1;//找到增广路就不用继续找了
q.push(e[i].to);//入队
}
}
return 0;
}
int dfs(int x,int maxf)
{
if (x==t||!maxf) return maxf;
//如果已经到了汇点或者没有剩余流量就退出,返回剩余流量
int rest=0;
for (int i=last[x];~i;i=e[i].next)
if (e[i].c&&dis[x]+1==dis[e[i].to])
//如果还有容量并且e[i].to是x的下一层就进入
{
int f=dfs(e[i].to,min(e[i].c,maxf-rest));
//往下搜
if (!f) dis[e[i].to]=-1;
//找不下去了(到汇点或没有剩余流量)就标记
rest+=f;//使用流量也要加
e[i].c-=f;
e[i^1].c+=f;//改变流量
}
if (!rest) dis[x]=-1;//如果根本没用流量就标记
return rest;
}
int dinic()
{
int ans=0;//初始化计数器
while (bfs()) //找增广路并建立分层图
ans+=dfs(s,inf); //改流量并统计
return ans; //返回最终答案
}
int main()
{
memset(last,-1,sizeof(last));
cnt=-1;//初始化
scanf("%d%d%d%d",&n,&m,&s,&t);
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);//建图
}
printf("%d",dinic());//直接dinic
}
费用流模版
题目大意:
给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。
解题思路:
Spfa + 统计
Accepted code:
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=100050;
const int inf=1e9;
int n,m,cnt,last[5001],S,T,dis[5001],vis[5001],pre[5001],ans,sum,cf[5001];
struct node{int from,to,c,w,next;}e[100050];
queue<int> que;
void add(int u,int v,int c,int w)//邻接表
{
e[++cnt].from=u;
e[cnt].to=v;
e[cnt].c=c;
e[cnt].w=w;
e[cnt].next=last[u];
last[u]=cnt;
e[++cnt].from=v;
e[cnt].to=u;
e[cnt].c=0;
e[cnt].w=-w;
e[cnt].next=last[v];
last[v]=cnt;
}
bool spfa()//spfa最短路不解释
{
for (int i=1;i<=n;i++) dis[i]=inf;
dis[S]=0;que.push(S);vis[S]=1;cf[S]=inf;
while (!que.empty())
{
int u=que.front();que.pop();
for (int i=last[u];~i;i=e[i].next)
if (e[i].c&&dis[u]+e[i].w<dis[e[i].to])
{
dis[e[i].to]=dis[u]+e[i].w;
cf[e[i].to]=min(cf[u],e[i].c);
pre[e[i].to]=i;
if (!vis[e[i].to])
vis[e[i].to]=1,que.push(e[i].to);
}
vis[u]=0;
}
return dis[T]<inf;
//如果到了汇点就说明找到增广路并且这条增广路是最小费用
}
void mcf()
{
int x=T;
sum+=cf[T];//统计流量
ans+=dis[x]*cf[T];//统计费用
while (pre[x])//从后往前改流量
{
e[pre[x]].c-=cf[T];
e[pre[x]^1].c+=cf[T];
x=e[pre[x]].from;
}
}
int main()
{
cnt=-1;
memset(last,-1,sizeof(last));//初始化
scanf("%d%d%d%d",&n,&m,&S,&T);
int u,v,w,f;
for (int i=1;i<=m;i++)
scanf("%d%d%d%d",&u,&v,&w,&f),add(u,v,w,f);
while (spfa()) mcf();
printf("%d %d",sum,ans);//愉快输出
}
后记:
解题思路写的短不是因为我懒,是因为这两题都是模版题,并没有什么特别的地方好讲,只要明白最大流&费用流这两题就能做出来,不像假期的宿舍,建边什么的比这些复杂,这个套一个模版的事情不想多说,没有什么必要。