自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 注意力机制+Swin-Transformer详解

注意力机制与Swin-Transformer本文内容和图片未经允许禁止盗用,转载请注出处。一、摘要本文包括两个部分,第一部分主要介绍注意力机制的思想,并详细讲解注意力机制、自注意力机制和多头注意力机制的区别和本质原理,第二部分将详细讲解SWin-Transformer的网络结构,算法策略。最后总结Transformer应用于视觉领域的现状和发展。对注意力机制有一定了解的同学可以直接看第二部分,看SWin-Transformer是通过什么样的策略解决掉在图像上计算多头注意力的高复杂度问题。二、注意力机

2021-09-14 22:08:38 5981 3

原创 YOLO3+残差网络+FPN详解

概述yolo3的论文写的跟个小作文一样,也不知道怎么过的审,里面实质性的东西并不多,做的实验一部分是引用Facebook AI Research的《Focal Loss for Dense Object Detection》,虽然最后没有用Focal Loss,但还是cite了人家一个大图;v3较v2提升明显的是对小物体的识别精度,但这也不是Joseph Redmon的原创,引用的还是Facebook AI Research的《Feature Pyramid Networks for Object Det

2021-01-26 20:54:53 8028 2

原创 YOLO系列——v2详解

YOLO系列–V2详解概述yolo从v2开始改动的就比较多了,在目标检测方向的表现也越来越强,精度可以与Faster-rcnn等two-stage的分割网络相提并论,同时又能满足实时识别的要求,在实际工程化中使用的很频繁,同时网络中使用的小trick也更多,所以除了工程化外,也提供了一些发顶会的小idea。下面还是先从网络结构出发,了解yolo2的主干,然后再推敲细节。一、主干网络v2的主干网络没有沿用v1的googlenet ,而采用了darknet-19。19层卷积和5层最大池化。在标准ima

2021-01-05 21:02:12 2634 1

原创 yolo系列——v1详解

yolo系列——v1详解概述yolo系列,持续更新yolo系列已经出到v5,在目标检测方向的表现越来越强。虽然v1较之后的版本,SSD等网络相对简单,但还是建议大家从头学起,打好一些基本功,以便于日后设计新的识别网络、发顶会或者工程化可以有清晰的思路。任何算法都需要自己理解并实现,简单的拿来主义并没有实质性的帮助。论文地址:https://arxiv.org/pdf/1506.02640.pdftf实现:https://github.com/gliese581gg/YOLO_tensorflow

2020-11-10 21:52:18 3026 1

原创 目标识别—SSD网络详解

SSD网络详解网上的SSD解析大部分都只讲解到了Priorbox部分,最后的分类和回归并没有详细的讲解,并且论文里关于算法的一些细节也没有交代清楚。本篇文章将详细的从vgg16部分讲解到最后的识别部分。帮助大家更好的理解ssd网络,更好地进行迁移学习,以及网络优化。论文地址:https://arxiv.org/abs/1512.02325Ssd-caffe github :https://github.com/weiliu89/caffe/tree/ssdSsd-pytorch github :

2020-07-31 20:35:23 4444 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除