yolo系列——v1详解

yolo系列——v1详解

概述

yolo系列,持续更新

yolo系列已经出到v5,在目标检测方向的表现越来越强。虽然v1较之后的版本,SSD等网络相对简单,但还是建议大家从头学起,打好一些基本功,以便于日后设计新的识别网络、发顶会或者工程化可以有清晰的思路。任何算法都需要自己理解并实现,简单的拿来主义并没有实质性的帮助。

论文地址:https://arxiv.org/pdf/1506.02640.pdf
tf实现:https://github.com/gliese581gg/YOLO_tensorflow

yolo1详解

yolo1的过程可以分为三步:
1.将输入图像划分成7x7=49个网格grid cell(以网格为基本单位)
2.CNN网络做特征提取
3.计算类别信息和位置回归

一、划分S*S网格

将输入图像划分为SXS个网格(yolo1设置为7x7),每个网格预测出2个边界框,所以一幅图像可以得到7x7x2=98个边界框。当物体的中心点落到某个grid cell内,由该cell确定的BoundingBox负责预测此物体。如下图所示:
在这里插入图片描述
每个边界框要回归自己的位置(x,y,w,h)外加一个confidence。置信度包含了此bbox内含有目标的概率和IOU值。公式如下:
在这里插入图片描述

式中,Pr⁡(Object)是边界框内存在对象的概率,若存在对象,Pr⁡(Object)=1,否则Pr⁡(Object)=0;IOU是真实框与预测框的交并比,之前在SSD网络详细讲解过,这里不再赘述。同样地,yolo1使用NMS来保留最优解。

二、yolo1的主干网络:

yolo1使用的特征提取主干网络类似于GoogLeNet,
网络结构如下:
在这里插入图片描述
Yolov1的主干网络参考GoogLeNet,包含24层卷积,4层最大池化,2层全连接层。输入是448x448x3的图像,输出是7x7x30的张量。
输出张量的大小就对应着第一步里7x7个网格,通道数30具体的含义如下:
在这里插入图片描述
如上图,输出的7x7x30的张量的含义:某一个cell确定的边界框内20类物体的概率(20维)+ 某一个cell确定的2个边界框内的置信度(第一步介绍) + 某一个cell确定的2个边界框的位置信息(4x2)=30

三、损失函数:

yolo1的loss使用均方和误差,简单粗暴的将五种信息的均方误差按照一定的权重累加在一起。具体表达如下:
在这里插入图片描述

如上式子,包括五个部分。第一行表示边界框中心点位置误差;第二行表示边界框宽高误差;第三行表示当边界框内有目标时的置信度误差,第四行表示当边界框内无目标时的置信度误差,第五行表示20个类的概率误差。

yolov1比较简单,v2~v5持续更新。

YOLO(You Only Look Once)是一种实时目标检测算法系列,从V1到V8版本有显著的进步: 1. YOLO V1(2016年):最初发布的版本,采用单阶段检测模型,将目标检测视为回归问题,一次前向传播就能预测出物体的边界框和类别。它引入了Grid Cell的概念,每个网格单元对应一个预测。 2. YOLO V2(2017年):改进了前一代的不足,如边界框大小调整、空间金字塔池化(SPP)用于处理不同尺度的目标,并提出了"忽略区域"(Ignore Region)机制,减少了误报。 3. YOLO V3(2018年):增加更多的锚点(Anchor Boxes),同时引入了特征金字塔网络(Feature Pyramid Networks, FPN),结合多尺度信息提高了精度。 4. YOLO V4(2020年):优化了损失函数和网络结构,引入了 Mish 激活函数,以及更大的训练数据集和更强的模型能力。 5. YOLO V5(2021年):继续提升性能,采用了更多先进的技术,如Mosaic数据增强、混合批归一化等,同时在速度上保持高效。 6. YOLO V6(2022年):强化了对小目标检测的支持,并通过更复杂的网络架构和更大规模的数据预训练进一步提高精度。 7. YOLOX(2022年):这是YOLO的一个分支,虽然不是独立版本,但它基于Transformer的设计,强调模型的灵活性和通用性,实现了更快的速度和更高的准确度。 8. YOLO V7和V8(2023年+):随着技术的发展,后续版本可能会引入新的模型架构、更高效的训练策略和更多的实验性功能,比如更高级的注意力机制,以及可能集成更多元化的任务如实例分割和关键点检测。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值