抽象代数学习笔记三《群:对称性变换与对称性群》
学习笔记参考:《近世代数初步》第2版 高等教育出版社——石生明编著
注:本篇笔记根据博主个人数学的掌握情况整理
课后习题
1、计算下列图形的对称性群:
(1)正五边形;
(2)不等边矩形;
(3)圆;
2、用
S
3
S_3
S3 去变
x
1
3
x
2
2
x
3
x_1^3x_2^2x_3
x13x22x3 能变出几个多项式,把它们全写出来;以
x
1
3
x
2
2
x
3
x_1^3x_2^2x_3
x13x22x3 为其中一项作出一个和,使它是对称多项式,并使其项数最少;
3、证明
S
4
S_4
S4 中下列4个元的集合:
{
(
1
)
,
(
1
2
)
(
3
4
)
,
(
1
3
)
(
2
4
)
,
(
1
4
)
(
2
3
)
}
\{(1),(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 3)\}
{(1),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} 在置换乘法下成为一个群,记为
V
4
V_4
V4 ;并且它是
A
4
A_4
A4 的子群;
参考答案如下:
