【论文精读系列】之《Learning Background-Aware Correlation Filters for Visual Tracking》其三

【论文精读系列】之《Learning Background-Aware Correlation Filters for Visual Tracking》其三

论文地址:《Learning Background-Aware Correlation Filters for Visual Tracking》

:该篇博客中,为了明确矩阵或者向量的形状,常出现诸如 ( A ) m , n (\boldsymbol A)_{m,n} (A)m,n 或者 ( b ) n , 1 (\boldsymbol b)_{n,1} (b)n,1 的表示,则表明 A \boldsymbol A A 是一个 m m m n n n 列的矩阵,而 b \boldsymbol b b 则是 n n n 行 1 列的列向量。

4 Background-Aware Correlation Filters(背景感知相关滤波器)

首先要对先前博客的内容做一个更正
在上一篇博客中指出, x \boldsymbol x x 表示拥有 D D D 个像素的单帧图像,这是为了便于后续的说明,事实上, x \boldsymbol x x 真正表示的是单帧图像中拥有 D D D 个像素的一个图像块(块中包含目标)。

上图整个是一帧图像, x \boldsymbol x x 表示图中蓝色框内的图像块,它包含了目标(bird),且一共有 D D D 个像素(多通道的话每个特征通道都有 D D D 个像素)。
如先前博客所述,我们需要更多的来自背景的真实样本,因此论文扩大了选取的图像块的大小。
现在 x \boldsymbol x x 表示图中绿色框内的图像块,它包含了目标(bird),且一共有 T T T 个像素(多通道的话每个特征通道都有 T T T 个像素)。
那么现在有了绿色框内图像块,我们还想把先前小范围精确包含目标(bird)的蓝色框内的图像块提取出来,怎么操作?
论文提出一个裁剪矩阵 ( P ) D , T (\boldsymbol P)_{D,T} (P)D,T,其中元素不是 0 就是 1 ,它可以完成这个任务。
补充说明3(开始)
不妨举一个例子(单通道),绿色框内图像块记为 I m a g e g r e e n Image_{green} Imagegreen,其为
I m a g e g r e e n = [ 255 255 255 255 255 255 255 255 255 255 0 255 255 255 255 255 ] Image_{green}=\begin{bmatrix} 255 & 255 & 255 & 255 \\ 255 & 255 & 255 & 255 \\ 255 & 255 & 0 & 255 \\ 255 & 255 & 255 & 255 \\ \end{bmatrix} Imagegreen=2552552552552552552552552552550255255255255255 其中灰度值为 0 的像素为目标(目标就一个像素),示意图如下图

蓝色框内的图像块记为 I m a g e b l u e Image_{blue} Imageblue,其为
I m a g e b l u e = [ 255 255 255 0 ] Image_{blue}=\begin{bmatrix} 255 & 255 \\255 & 0 \end{bmatrix} Imageblue=[2552552550] 向量化之后分别有
x b l u e = [ 255 255 255 0 ] = [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ] [ 255 255 255 255 255 255 255 255 255 255 0 255 255 255 255 255 ] = P x g r e e n \boldsymbol x_{blue}=\begin{bmatrix} 255 \\ 255 \\255\\0 \end{bmatrix}= \begin{bmatrix} 0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0\end{bmatrix} \begin{bmatrix} 255 \\ 255 \\255\\255\\255\\255\\255\\255\\255\\255\\0\\255\\255\\255\\255\\255 \end{bmatrix}=\boldsymbol P\boldsymbol x_{green} xblue=2552552550=00000000000000000000100001000000000000100001000000000000000000002552552552552552552552552552550255255255255255=Pxgreen 补充说明3(结束)

有了上述的说明,便可以引出论文核心的公式,公式(3)如下:
E ( h ) = 1 2 ∑ j = 1 T ∥ y ( j ) − ∑ k = 1 K h k T P x k [ Δ τ j ] ∥ 2 2 + λ 2 ∑ k = 1 K ∥ h k ∥ 2 2 (3) E(\boldsymbol h)=\frac{1}{2}{\sum_{j=1}^T\lVert y(j)-\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\boldsymbol x_k[\Delta{\boldsymbol\tau}_j]\rVert_2^2}+\frac{\lambda}{2}\sum_{k=1}^K\lVert{\boldsymbol h}_k\rVert_2^2\tag{3} E(h)=21j=1Ty(j)k=1KhkTPxk[Δτj]22+2λk=1Khk22(3) 相比公式(2),仅仅是每一特征通道的图像块 x k \boldsymbol x_k xk 变为了 T T T 行 1 列,并使用裁剪矩阵 ( P ) D , T (\boldsymbol P)_{D,T} (P)D,T 进行裁剪。对裁剪后的 ( P x k [ Δ τ j ] ) D , 1 (\boldsymbol P\boldsymbol x_k[\Delta{\boldsymbol\tau}_j])_{D,1} (Pxk[Δτj])D,1 进行滤波,同样需要滤波器 ( h ) D , 1 (\boldsymbol h)_{D,1} (h)D,1 ,可以看出滤波器的尺寸没有变化,因而需要学习的参数没有增多。
需要指明的是:实际操作时, T ≫ D T\gg D TD,一般在 4 倍左右。

为了提高计算效率,相关滤波器通常在频域中学习。下面将公式(3)进行频域表达,即对其进行离散傅里叶变换(DFT)

补充说明4(开始)
任一离散数字信号序列 ( a ) N , 1 (\boldsymbol a)_{N,1} (a)N,1 ,其离散傅里叶变换结果为 ( a ^ ) N , 1 (\hat \boldsymbol a)_{N,1} (a^)N,1 ,有:
( a ^ ) N , 1 = N ( F ) N , N ( a ) N , 1 (\hat \boldsymbol a)_{N,1}=\sqrt{N}(\boldsymbol F)_{N,N}(\boldsymbol a)_{N,1} (a^)N,1=N (F)N,N(a)N,1 其中矩阵 F \boldsymbol F F 如下
F = 1 N [ 1 1 1 ⋯ 1 1 W N 1 W N 2 ⋯ W N N − 1 1 W N 2 W N 4 ⋯ W N 2 ( N − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W N N − 1 W N 2 ( N − 1 ) ⋯ W N ( N − 1 ) ( N − 1 ) ] N , N \boldsymbol F=\frac{1}{N}\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_N^1&W_N^2&\cdots&W_N^{N-1}\\ 1&W_N^2&W_N^4&\cdots&W_N^{2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_N^{N-1}&W_N^{2(N-1)}&\cdots&W_N^{(N-1)(N-1)}\end{bmatrix}_{N,N} F=N111111WN1WN2WNN11WN2WN4WN2(N1)1WNN1WN2(N1)WN(N1)(N1)N,N 可以看出 N F \sqrt{N}\boldsymbol F N F 是复数基向量的正交矩阵(即酉矩阵),用于将任何 N N N 维矢量化信号映射到傅立叶域。为了便于理解,仍需做四点说明:
① 上述矩阵 F \boldsymbol F F 对应的傅里叶逆变换矩阵如下
F − 1 = [ 1 1 1 ⋯ 1 1 W N − 1 W N − 2 ⋯ W N − ( N − 1 ) 1 W N − 2 W N − 4 ⋯ W N − 2 ( N − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W N − ( N − 1 ) W N − 2 ( N − 1 ) ⋯ W N − ( N − 1 ) ( N − 1 ) ] N , N \boldsymbol F^{-1}=\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_N^{-1}&W_N^{-2}&\cdots&W_N^{-(N-1)}\\ 1&W_N^{-2}&W_N^{-4}&\cdots&W_N^{-2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_N^{-(N-1)}&W_N^{-2(N-1)}&\cdots&W_N^{-(N-1)(N-1)}\end{bmatrix}_{N,N} F1=11111WN1WN2WN(N1)1WN2WN4WN2(N1)1WN(N1)WN2(N1)WN(N1)(N1)N,N 且有 ( N F ) − 1 ( N F ) = ( N F ) ( N F ) − 1 = I (\sqrt{N}\boldsymbol F)^{-1}(\sqrt{N}\boldsymbol F)=(\sqrt{N}\boldsymbol F)(\sqrt{N}\boldsymbol F)^{-1}=\boldsymbol I (N F)1(N F)=(N F)(N F)1=I
② 在很多地方可以看见 F \boldsymbol F F 也有别的定义方式,如
F = 1 N [ 1 1 1 ⋯ 1 1 W N 1 W N 2 ⋯ W N N − 1 1 W N 2 W N 4 ⋯ W N 2 ( N − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W N N − 1 W N 2 ( N − 1 ) ⋯ W N ( N − 1 ) ( N − 1 ) ] N , N \boldsymbol F=\frac{1}{\sqrt{N}}\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_N^1&W_N^2&\cdots&W_N^{N-1}\\ 1&W_N^2&W_N^4&\cdots&W_N^{2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_N^{N-1}&W_N^{2(N-1)}&\cdots&W_N^{(N-1)(N-1)}\end{bmatrix}_{N,N} F=N 111111WN1WN2WNN11WN2WN4WN2(N1)1WNN1WN2(N1)WN(N1)(N1)N,N F − 1 = 1 N [ 1 1 1 ⋯ 1 1 W N − 1 W N − 2 ⋯ W N − ( N − 1 ) 1 W N − 2 W N − 4 ⋯ W N − 2 ( N − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W N − ( N − 1 ) W N − 2 ( N − 1 ) ⋯ W N − ( N − 1 ) ( N − 1 ) ] N , N \boldsymbol F^{-1}=\frac{1}{\sqrt{N}}\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_N^{-1}&W_N^{-2}&\cdots&W_N^{-(N-1)}\\ 1&W_N^{-2}&W_N^{-4}&\cdots&W_N^{-2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_N^{-(N-1)}&W_N^{-2(N-1)}&\cdots&W_N^{-(N-1)(N-1)}\end{bmatrix}_{N,N} F1=N 111111WN1WN2WN(N1)1WN2WN4WN2(N1)1WN(N1)WN2(N1)WN(N1)(N1)N,N对于这个问题,可以参照维基百科词条 DFT matrix 的解释,简而言之就是,矩阵 F \boldsymbol F F F − 1 \boldsymbol F^{-1} F1 前的归一化因子可以任意选取,只要保证 F − 1 F = F F − 1 = I \boldsymbol F^{-1}\boldsymbol F=\boldsymbol F\boldsymbol F^{-1}=\boldsymbol I F1F=FF1=I 即可,但是我们选取 F = 1 N [ 1 1 1 ⋯ 1 1 W N 1 W N 2 ⋯ W N N − 1 1 W N 2 W N 4 ⋯ W N 2 ( N − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W N N − 1 W N 2 ( N − 1 ) ⋯ W N ( N − 1 ) ( N − 1 ) ] N , N \boldsymbol F=\frac{1}{N}\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_N^1&W_N^2&\cdots&W_N^{N-1}\\ 1&W_N^2&W_N^4&\cdots&W_N^{2(N-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_N^{N-1}&W_N^{2(N-1)}&\cdots&W_N^{(N-1)(N-1)}\end{bmatrix}_{N,N} F=N111111WN1WN2WNN11WN2WN4WN2(N1)1WNN1WN2(N1)WN(N1)(N1)N,N 时,可以保证 N F \sqrt{N}\boldsymbol F N F 是酉矩阵(在论文中 N F \sqrt{N}\boldsymbol F N F 才是离散傅里叶变换矩阵,而非 F \boldsymbol F F)。若 N F \sqrt{N}\boldsymbol F N F 是酉矩阵,则有 ( N F ) H ( N F ) = ( N F ) ( N F ) H = I (\sqrt{N}\boldsymbol F)^H(\sqrt{N}\boldsymbol F)=(\sqrt{N}\boldsymbol F)(\sqrt{N}\boldsymbol F)^H=\boldsymbol I (N F)H(N F)=(N F)(N F)H=I,这会给傅里叶域计算带来便捷。
③ 矩阵元素中的 W N = e − i 2 π N W_N=e^{-i\frac{2\pi}{N}} WN=eiN2π,因此当 N = 4 N=4 N=4 时,有 W 4 = e − i 2 π 4 = − i W_4=e^{-i\frac{2\pi}{4}}=-i W4=ei42π=i
4 F = 1 4 [ 1 1 1 1 1 − i − 1 i 1 − 1 1 − 1 1 i − 1 − i ] 4 , 4 \sqrt{4}\boldsymbol F=\frac{1}{\sqrt{4}}\begin{bmatrix} 1&1&1&1 \\1&-i&-1&i\\ 1&-1&1&-1\\1 &i&-1&-i\end{bmatrix}_{4,4} 4 F=4 111111i1i11111i1i4,4 易验证上面是一个酉矩阵。 W N = e − i 2 π N W_N=e^{-i\frac{2\pi}{N}} WN=eiN2π(称之为旋转因子) 还有计算性质如下
• 周期性 W N n = W N n + r N W_N^n=W_N^{n+rN} WNn=WNn+rN
• 共轭对称性 W N n = ( W N − n ) ∗ W_N^n=(W_N^{-n})^* WNn=(WNn)
• 可约性 W r N r n = W N n W_{rN}^{rn}=W_N^n WrNrn=WNn
• 正交性 1 N ∑ n = 0 N − 1 W N k n ( W N m n ) ∗ = 1 N ∑ n = 0 N − 1 W N ( k − m ) n = { 1 , k = m 0 , k ≠ m \frac{1}{N}\sum_{n=0}^{N-1}W_{N}^{kn}(W_N^{mn})^*=\frac{1}{N}\sum_{n=0}^{N-1}W_{N}^{(k-m)n}=\begin{cases} 1,&k=m \\ 0,&k \neq m \end{cases} N1n=0N1WNkn(WNmn)=N1n=0N1WN(km)n={1,0,k=mk=m
( a ^ ) N , 1 = N ( F ) N , N ( a ) N , 1 (\hat \boldsymbol a)_{N,1}=\sqrt{N}(\boldsymbol F)_{N,N}(\boldsymbol a)_{N,1} (a^)N,1=N (F)N,N(a)N,1 是矩阵形式的表达,DFT 及 IDFT 常见写法如下
a ^ ( k ) = 1 N ∑ n = 0 N − 1 a ( n ) W N n k , k = 0 , 1 , ⋯   , N − 1 \hat a(k)=\frac{1}{\sqrt{N}}\sum_{n=0}^{N-1} a(n)W_N^{nk},k=0,1,\cdots,N-1 a^(k)=N 1n=0N1a(n)WNnk,k=0,1,,N1 a ( n ) = 1 N ∑ k = 0 N − 1 a ^ ( k ) W N − n k , n = 0 , 1 , ⋯   , N − 1 a(n)=\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}\hat a(k)W_N^{-nk},n=0,1,\cdots,N-1 a(n)=N 1k=0N1a^(k)WNnk,n=0,1,,N1 补充说明4(结束)

下面我们考虑将公式(3)变换到频域(傅氏域):
有了上述的补充说明,便可以进行下述推导:
重点先看公式(3)的第一项(省略系数 1 2 \frac{1}{2} 21 ∑ j = 1 T ∥ y ( j ) − ∑ k = 1 K h k T P x k [ Δ τ j ] ∥ 2 2 {\sum_{j=1}^T\lVert y(j)-\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\boldsymbol x_k[\Delta{\boldsymbol\tau}_j]\rVert_2^2} j=1Ty(j)k=1KhkTPxk[Δτj]22 将其展开写可写成:
[ y ( 1 ) − ( ⟨ P T h 1 , x 1 [ Δ τ 1 ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ 1 ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ 1 ] ⟩ ) ] 2 + \begin{bmatrix} y(1)-\begin{pmatrix}\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_1]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_1]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_1]\rangle\end{pmatrix} \end{bmatrix}^2+ [y(1)(PTh1,x1[Δτ1]+PTh2,x2[Δτ1]++PThK,xK[Δτ1])]2+ [ y ( 2 ) − ( ⟨ P T h 1 , x 1 [ Δ τ 2 ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ 2 ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ 2 ] ⟩ ) ] 2 \begin{bmatrix} y(2)-\begin{pmatrix}\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_2]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_2]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_2]\rangle\end{pmatrix} \end{bmatrix}^2 [y(2)(PTh1,x1[Δτ2]+PTh2,x2[Δτ2]++PThK,xK[Δτ2])]2 + ⋯ + +\cdots + ++ [ y ( T ) − ( ⟨ P T h 1 , x 1 [ Δ τ T ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ T ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ T ] ⟩ ) ] 2 \begin{bmatrix} y(T)-\begin{pmatrix}\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_T]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_T]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_T]\rangle\end{pmatrix} \end{bmatrix}^2 [y(T)(PTh1,x1[ΔτT]+PTh2,x2[ΔτT]++PThK,xK[ΔτT])]2 将上述展开式看成一个 “大” 的 2-范数的平方,即 ∥ ( y ) T , 1 − ( z ) T , 1 ∥ 2 2 \lVert(\boldsymbol y)_{T,1}-(\boldsymbol z)_{T,1}\rVert_2^2 (y)T,1(z)T,122 ,其中 z ( j ) = ∑ k = 1 K ⟨ P T h k , x k [ Δ τ j + 1 ] ⟩ , j = 0 , 1 , ⋯   , T − 1 z(j)=\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]\rangle,j=0,1,\cdots,T-1 z(j)=k=1KPThk,xk[Δτj+1],j=0,1,,T1 显然有对 y \boldsymbol y y 的 DFT: y ^ = T F y \hat\boldsymbol y=\sqrt{T}\boldsymbol F\boldsymbol y y^=T Fy
下面考虑对 z \boldsymbol z z 的 DFT, z ^ \hat\boldsymbol z z^ ,显然有:
z ^ = T F z = \hat\boldsymbol z=\sqrt{T}\boldsymbol F\boldsymbol z= z^=T Fz= 1 T [ 1 1 1 ⋯ 1 1 W T 1 W T 2 ⋯ W T T − 1 1 W T 2 W T 4 ⋯ W T 2 ( T − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 1 W T T − 1 W T 2 ( T − 1 ) ⋯ W T ( T − 1 ) ( T − 1 ) ] T , T [ ⟨ P T h 1 , x 1 [ Δ τ 1 ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ 1 ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ 1 ] ⟩ ⟨ P T h 1 , x 1 [ Δ τ 2 ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ 2 ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ 2 ] ⟩ ⋮ ⟨ P T h 1 , x 1 [ Δ τ T ] ⟩ + ⟨ P T h 2 , x 2 [ Δ τ T ] ⟩ + ⋯ + ⟨ P T h K , x K [ Δ τ T ] ⟩ ] T , 1 \frac{1}{\sqrt{T}}\begin{bmatrix} 1&1&1&\cdots&1 \\1&W_T^1&W_T^2&\cdots&W_T^{T-1}\\ 1&W_T^2&W_T^4&\cdots&W_T^{2(T-1)}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 &W_T^{T-1}&W_T^{2(T-1)}&\cdots&W_T^{(T-1)(T-1)}\end{bmatrix}_{T,T}\begin{bmatrix}\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_1]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_1]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_1]\rangle\\\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_2]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_2]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_2]\rangle\\\vdots\\\langle\boldsymbol P^T\boldsymbol h_1,\boldsymbol x_1[\Delta{\boldsymbol\tau}_T]\rangle+\langle\boldsymbol P^T\boldsymbol h_2,\boldsymbol x_2[\Delta{\boldsymbol\tau}_T]\rangle+\cdots+\langle\boldsymbol P^T\boldsymbol h_K,\boldsymbol x_K[\Delta{\boldsymbol\tau}_T]\rangle\end{bmatrix}_{T,1} T 111111WT1WT2WTT11WT2WT4WT2(T1)1WTT1WT2(T1)WT(T1)(T1)T,TPTh1,x1[Δτ1]+PTh2,x2[Δτ1]++PThK,xK[Δτ1]PTh1,x1[Δτ2]+PTh2,x2[Δτ2]++PThK,xK[Δτ2]PTh1,x1[ΔτT]+PTh2,x2[ΔτT]++PThK,xK[ΔτT]T,1 写成另外一种形式为: z ^ ( i ) = 1 T ∑ j = 0 T − 1 z ( j ) W N j i = 1 T ∑ j = 0 T − 1 ∑ k = 1 K ⟨ P T h k , x k [ Δ τ j + 1 ] ⟩ W N j i , i = 0 , 1 , ⋯   , T − 1 \hat z(i)=\frac{1}{\sqrt{T}}\sum_{j=0}^{T-1} z(j)W_N^{ji}=\frac{1}{\sqrt{T}}\sum_{j=0}^{T-1}\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]\rangle W_N^{ji},i=0,1,\cdots,T-1 z^(i)=T 1j=0T1z(j)WNji=T 1j=0T1k=1KPThk,xk[Δτj+1]WNji,i=0,1,,T1 利用公式 λ ⟨ a , b ⟩ = ⟨ a , λ b ⟩ \lambda\langle \boldsymbol a,\boldsymbol b\rangle=\langle \boldsymbol a,\lambda \boldsymbol b\rangle λa,b=a,λb 则有:
z ^ ( i ) = 1 T ∑ j = 0 T − 1 ∑ k = 1 K ⟨ P T h k , x k [ Δ τ j + 1 ] W N j i ⟩ \hat z(i)=\frac{1}{\sqrt{T}}\sum_{j=0}^{T-1}\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]W_N^{ji}\rangle z^(i)=T 1j=0T1k=1KPThk,xk[Δτj+1]WNji 交换求和顺序(互换符号 ∑ \sum ):
z ^ ( i ) = 1 T ∑ k = 1 K ∑ j = 0 T − 1 ⟨ P T h k , x k [ Δ τ j + 1 ] W N j i ⟩ \hat z(i)=\frac{1}{\sqrt{T}}\sum_{k=1}^K\sum_{j=0}^{T-1}\langle\boldsymbol P^T\boldsymbol h_k,\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]W_N^{ji}\rangle z^(i)=T 1k=1Kj=0T1PThk,xk[Δτj+1]WNji 利用公式 ∑ ⟨ a , b j ⟩ = ⟨ a , ∑ b j ⟩ \sum\langle \boldsymbol a,\boldsymbol b_j\rangle=\langle \boldsymbol a,\sum \boldsymbol b_j\rangle a,bj=a,bj 则有:
z ^ ( i ) = 1 T ∑ k = 1 K ⟨ P T h k , ∑ j = 0 T − 1 x k [ Δ τ j + 1 ] W N j i ⟩ = ∑ k = 1 K ⟨ P T h k , 1 T ∑ j = 0 T − 1 x k [ Δ τ j + 1 ] W N j i ⟩ \hat z(i)=\frac{1}{\sqrt{T}}\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\sum_{j=0}^{T-1}\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]W_N^{ji}\rangle=\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\frac{1}{\sqrt{T}}\sum_{j=0}^{T-1}\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}]W_N^{ji}\rangle z^(i)=T 1k=1KPThk,j=0T1xk[Δτj+1]WNji=k=1KPThk,T 1j=0T1xk[Δτj+1]WNji 上式中 ( x k [ Δ τ j + 1 ] ) T , 1 (\boldsymbol x_k[\Delta{\boldsymbol\tau}_{j+1}])_{T,1} (xk[Δτj+1])T,1 为,写开有如下:
z ^ ( i ) = ∑ k = 1 K ⟨ P T h k , 1 T [ x k [ Δ τ 1 ] x k [ Δ τ 2 ] ⋯ x k [ Δ τ T ] ] [ W T 0 i W T 1 i ⋮ W T ( T − 1 ) i ] ⟩ \hat z(i)=\sum_{k=1}^K\langle\boldsymbol P^T\boldsymbol h_k,\frac{1}{\sqrt{T}}\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1] &\boldsymbol x_k[\Delta{\boldsymbol\tau}_2] &\cdots &\boldsymbol x_k[\Delta{\boldsymbol\tau}_{T}] \end{bmatrix}\begin{bmatrix} W_T^{0i}\\W_T^{1i}\\\vdots\\W_T^{(T-1)i}\end{bmatrix}\rangle z^(i)=k=1KPThk,T 1[xk[Δτ1]xk[Δτ2]xk[ΔτT]]WT0iWT1iWT(T1)i
= ∑ k = 1 K ( h k T P 1 T [ x k [ Δ τ 1 ] x k [ Δ τ 2 ] ⋯ x k [ Δ τ T ] ] [ W T 0 i W T 1 i ⋮ W T ( T − 1 ) i ] ) =\sum_{k=1}^K(\boldsymbol h_k^T\boldsymbol P\frac{1}{\sqrt{T}}\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1] &\boldsymbol x_k[\Delta{\boldsymbol\tau}_2] &\cdots &\boldsymbol x_k[\Delta{\boldsymbol\tau}_{T}] \end{bmatrix}\begin{bmatrix} W_T^{0i}\\W_T^{1i}\\\vdots\\W_T^{(T-1)i}\end{bmatrix}) =k=1K(hkTPT 1[xk[Δτ1]xk[Δτ2]xk[ΔτT]]WT0iWT1iWT(T1)i)
= ∑ k = 1 K ⟨ [ x k [ Δ τ 1 ] T x k [ Δ τ 2 ] T ⋮ x k [ Δ τ T ] T ] P T h k , 1 T [ W T 0 i W T 1 i ⋮ W T ( T − 1 ) i ] ⟩ = ⟨ ∑ k = 1 K [ x k [ Δ τ 1 ] T x k [ Δ τ 2 ] T ⋮ x k [ Δ τ T ] T ] P T h k , 1 T [ W T 0 i W T 1 i ⋮ W T ( T − 1 ) i ] ⟩ =\sum_{k=1}^K\langle{\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1]^T\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_2]^T\\\vdots\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_T]^T\end{bmatrix}}\boldsymbol P^T\boldsymbol h_k,\frac{1}{\sqrt{T}}\begin{bmatrix} W_T^{0i}\\W_T^{1i}\\\vdots\\W_T^{(T-1)i}\end{bmatrix}\rangle=\langle\sum_{k=1}^K{\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1]^T\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_2]^T\\\vdots\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_T]^T\end{bmatrix}}\boldsymbol P^T\boldsymbol h_k,\frac{1}{\sqrt{T}}\begin{bmatrix} W_T^{0i}\\W_T^{1i}\\\vdots\\W_T^{(T-1)i}\end{bmatrix}\rangle =k=1Kxk[Δτ1]Txk[Δτ2]Txk[ΔτT]TPThk,T 1WT0iWT1iWT(T1)i=k=1Kxk[Δτ1]Txk[Δτ2]Txk[ΔτT]TPThk,T 1WT0iWT1iWT(T1)i
= ( ∑ k = 1 K h k T P [ x k [ Δ τ 1 ] x k [ Δ τ 2 ] ⋯ x k [ Δ τ T ] ] ) 1 , T ( 1 T [ W T 0 i W T 1 i ⋮ W T ( T − 1 ) i ] ) T , 1 =\left(\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1] &\boldsymbol x_k[\Delta{\boldsymbol\tau}_2] &\cdots&\boldsymbol x_k[\Delta{\boldsymbol\tau}_{T}] \end{bmatrix}\right)_{1,T}\left(\frac{1}{\sqrt{T}}\begin{bmatrix} W_T^{0i}\\W_T^{1i}\\\vdots\\W_T^{(T-1)i}\end{bmatrix}\right)_{T,1} =(k=1KhkTP[xk[Δτ1]xk[Δτ2]xk[ΔτT]])1,TT 1WT0iWT1iWT(T1)iT,1
因此 z ^ T = [ z ^ ( 0 ) , z ^ ( 1 ) , ⋯   , z ^ ( T − 1 ) ] \hat\boldsymbol z^T=[\hat z(0),\hat z(1),\cdots,\hat z(T-1)] z^T=[z^(0),z^(1),,z^(T1)] 为:
z ^ T = ( ∑ k = 1 K h k T P [ x k [ Δ τ 1 ] x k [ Δ τ 2 ] ⋯ x k [ Δ τ T ] ] ) 1 , T ( 1 T [ W T 0 W T 0 ⋯ W T 0 W T 0 W T 1 ⋯ W T T − 1 ⋮ ⋮ ⋱ ⋮ W T 0 W T 1 ( T − 1 ) ⋯ W T ( T − 1 ) ( T − 1 ) ] ) T , T \hat\boldsymbol z^T=\left(\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1] &\boldsymbol x_k[\Delta{\boldsymbol\tau}_2] &\cdots&\boldsymbol x_k[\Delta{\boldsymbol\tau}_{T}] \end{bmatrix}\right)_{1,T}\left(\frac{1}{\sqrt{T}} \begin{bmatrix} W_T^{0}&W_T^{0}&\cdots&W_T^{0}\\W_T^{0}&W_T^{1}&\cdots&W_T^{T-1}\\\vdots&\vdots&\ddots&\vdots\\W_T^{0}&W_T^{1(T-1)}&\cdots&W_T^{(T-1)(T-1)}\end{bmatrix}\right)_{T,T} z^T=(k=1KhkTP[xk[Δτ1]xk[Δτ2]xk[ΔτT]])1,TT 1WT0WT0WT0WT0WT1WT1(T1)WT0WTT1WT(T1)(T1)T,T
= ( ∑ k = 1 K h k T P [ x k [ Δ τ 1 ] x k [ Δ τ 2 ] ⋯ x k [ Δ τ T ] ] ) 1 , T ( T F ) T , T =\left(\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1] &\boldsymbol x_k[\Delta{\boldsymbol\tau}_2] &\cdots&\boldsymbol x_k[\Delta{\boldsymbol\tau}_{T}] \end{bmatrix}\right)_{1,T}\left(\sqrt{T} \boldsymbol F\right)_{T,T} =(k=1KhkTP[xk[Δτ1]xk[Δτ2]xk[ΔτT]])1,T(T F)T,T
记矩阵如下:
X k = [ x k [ Δ τ 1 ] T x k [ Δ τ 2 ] T ⋮ x k [ Δ τ T ] T ] = [ x k ( 1 ) x k ( 2 ) ⋯ x k ( T ) x k ( T ) x k ( 1 ) ⋯ x k ( T − 1 ) ⋮ ⋮ ⋱ ⋮ x k ( 2 ) x k ( 3 ) ⋯ x k ( 1 ) ] \boldsymbol X_k={\begin{bmatrix}\boldsymbol x_k[\Delta{\boldsymbol\tau}_1]^T\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_2]^T\\\vdots\\\boldsymbol x_k[\Delta{\boldsymbol\tau}_T]^T\end{bmatrix}}={\begin{bmatrix}x_k(1)&x_k(2)&\cdots&x_k(T)\\x_k(T)&x_k(1)&\cdots&x_k(T-1)\\\vdots&\vdots&\ddots&\vdots\\x_k(2)&x_k(3)&\cdots&x_k(1)\end{bmatrix}} Xk=xk[Δτ1]Txk[Δτ2]Txk[ΔτT]T=xk(1)xk(T)xk(2)xk(2)xk(1)xk(3)xk(T)xk(T1)xk(1) 很明显每一个 X k ( k = 1 , 2 , ⋯   , K ) \boldsymbol X_k(k=1,2,\cdots,K) Xk(k=1,2,,K) 是一个循环矩阵,我们可以很方便地对循环矩阵进行 DFT 。
这样,可以写出:
z ^ T = ∑ k = 1 K h k T P X k T T F \hat\boldsymbol z^T=\sum_{k=1}^K\boldsymbol h_k^T\boldsymbol P\boldsymbol X_k^T\sqrt{T}\boldsymbol F z^T=k=1KhkTPXkTT F 写成列向量的形式,需要进行转置( F = F T \boldsymbol F=\boldsymbol F^T F=FT):
z ^ = ∑ k = 1 K F X k T P T h k \hat\boldsymbol z=\sum_{k=1}^K\boldsymbol F\boldsymbol X_k\sqrt{T}\boldsymbol P^T\boldsymbol h_k z^=k=1KFXkT PThk
补充说明5(开始)
循环矩阵的重要性质:
任一循环矩阵均可以被离散傅里叶变换矩阵对角化
证明略,详见维基百科词条 Circulant matrix
及由博客【目标跟踪: 相关滤波器 三】循环矩阵 可知:
若使用论文定义的 F \boldsymbol F F,则有:
( X ^ k ) T , T = ( T F ) T , T ⋅ ( d i a g ( x k ) ) T , T ⋅ ( T F H ) T , T (\hat\boldsymbol X_k)_{T,T}=(\sqrt{T}\boldsymbol F)_{T,T}\cdot (diag({\boldsymbol x}_k))_{T,T}\cdot(\sqrt{T}\boldsymbol F^H)_{T,T} (X^k)T,T=(T F)T,T(diag(xk))T,T(T FH)T,T
( T F ) H ( T F ) = ( T F ) ( T F ) H = I (\sqrt{T}\boldsymbol F)^H(\sqrt{T}\boldsymbol F)=(\sqrt{T}\boldsymbol F)(\sqrt{T}\boldsymbol F)^H=\boldsymbol I (T F)H(T F)=(T F)(T F)H=I 且由于 ( T F ) T = ( T F ) (\sqrt{T}\boldsymbol F)^T=(\sqrt{T}\boldsymbol F) (T F)T=(T F) ,故可得: ( d i a g ( x k ) ) T , T = ( T F ) T , T ⋅ ( X ^ k ) T , T ⋅ ( T F ) T , T H (diag({\boldsymbol x}_k))_{T,T}=(\sqrt{T}\boldsymbol F)_{T,T}\cdot (\hat\boldsymbol X_k)_{T,T}\cdot(\sqrt{T}\boldsymbol F)_{T,T}^H (diag(xk))T,T=(T F)T,T(X^k)T,T(T F)T,TH 补充说明5(结束)

利用上述说明,有:
z ^ = ∑ k = 1 K F X k F H F T P T h k \hat\boldsymbol z=\sum_{k=1}^K\boldsymbol F\boldsymbol X_k\boldsymbol F^H\boldsymbol F\sqrt{T}\boldsymbol P^T\boldsymbol h_k z^=k=1KFXkFHFT PThk X k \boldsymbol X_k Xk 的生成向量的傅里叶变换为 x ^ k \hat\boldsymbol x_k x^k,则:
z ^ = ∑ k = 1 K d i a g ( x ^ k ) T ( F P T ) h k (*) \hat\boldsymbol z=\sum_{k=1}^K diag(\hat\boldsymbol x_k)\sqrt{T}(\boldsymbol F\boldsymbol P^T)\boldsymbol h_k\tag{*} z^=k=1Kdiag(x^k)T (FPT)hk(*) 不妨记 g k \boldsymbol g_k gk ,有
( g ^ k ) T , 1 = T ( F ) T , T ( P T h k ) T , 1 = T ( F ) T , T ( P T ) T , D ( h k ) D , 1 (\hat\boldsymbol g_k)_{T,1}=\sqrt{T}(\boldsymbol F)_{T,T}(\boldsymbol P^T{\boldsymbol h}_k )_{T,1}=\sqrt{T}(\boldsymbol F)_{T,T}(\boldsymbol P^T)_{T,D}({\boldsymbol h}_k )_{D,1} (g^k)T,1=T (F)T,T(PThk)T,1=T (F)T,T(PT)T,D(hk)D,1 再进行如下设计:
将滤波器的 k k k 个分量并成一个特别长的列向量 ( h ) ( D × K ) , 1 (\boldsymbol h)_{(D\times K),1} (h)(D×K),1
h = [ h 1 h 2 ⋮ h K ] = [ [ h 1 ( 1 ) h 1 ( 2 ) ⋯ h 1 ( D ) ] T [ h 2 ( 1 ) h 2 ( 2 ) ⋯ h 2 ( D ) ] T ⋮ [ h K ( 1 ) h K ( 2 ) ⋯ h K ( D ) ] T ] \boldsymbol h=\begin{bmatrix} \boldsymbol h_1\\\boldsymbol h_2\\ \vdots\\\boldsymbol h_K\end{bmatrix}=\begin{bmatrix} {\begin{bmatrix}h_1(1)&h_1(2)&\cdots&h_1(D)\end{bmatrix}}^T\\{\begin{bmatrix}h_2(1)&h_2(2)&\cdots&h_2(D)\end{bmatrix}}^T\\ \vdots\\{\begin{bmatrix}h_K(1)&h_K(2)&\cdots&h_K(D)\end{bmatrix}}^T\end{bmatrix} h=h1h2hK=[h1(1)h1(2)h1(D)]T[h2(1)h2(2)h2(D)]T[hK(1)hK(2)hK(D)]T 现在的 h \boldsymbol h h D × K D\times K D×K 行 1 列的列向量,裁剪矩阵 ( P ) D , T (\boldsymbol P)_{D,T} (P)D,T 无法直接与 ( h ) ( D × K ) , 1 (\boldsymbol h)_{(D\times K),1} (h)(D×K),1 进行计算(尺寸不匹配),因此我们需要引入克罗内克积(Kronecker Product),记其运算符为 ⊗ \otimes

补充说明6(开始)
矩阵 ( A ) m , n (\boldsymbol A)_{m,n} (A)m,n ( B ) p , q (\boldsymbol B)_{p,q} (B)p,q 进行克罗内克积运算,则有 ( A ⊗ B ) ( m × p ) , ( n × q ) (\boldsymbol A\otimes\boldsymbol B)_{(m\times p),(n\times q)} (AB)(m×p),(n×q) ,具体如下
A ⊗ B = [ a 11 B a 12 B ⋯ a 1 n B a 21 B a 22 B ⋯ a 2 n B ⋮ ⋮ ⋱ ⋮ a m 1 B a m 2 B ⋯ a m n B ] \boldsymbol A\otimes\boldsymbol B={\begin{bmatrix}a_{11}\boldsymbol B&a_{12}\boldsymbol B&\cdots&a_{1n}\boldsymbol B\\ a_{21}\boldsymbol B&a_{22}\boldsymbol B&\cdots&a_{2n}\boldsymbol B \\ \vdots&\vdots&\ddots&\vdots\\a_{m1}\boldsymbol B&a_{m2}\boldsymbol B&\cdots&a_{mn}\boldsymbol B \end{bmatrix}} AB=a11Ba21Bam1Ba12Ba22Bam2Ba1nBa2nBamnB 例如
[ a 11 a 12 a 21 a 22 a 31 a 32 ] ⊗ [ b 11 b 12 b 13 b 21 b 22 b 23 ] = [ a 11 b 11 a 11 b 12 a 11 b 13 a 12 b 11 a 12 b 12 a 12 b 13 a 11 b 21 a 11 b 22 a 11 b 23 a 12 b 21 a 12 b 22 a 12 b 23 a 21 b 11 a 21 b 12 a 21 b 13 a 22 b 11 a 22 b 12 a 22 b 13 a 21 b 21 a 21 b 22 a 21 b 23 a 22 b 21 a 22 b 22 a 22 b 23 a 31 b 11 a 31 b 12 a 31 b 13 a 32 b 11 a 32 b 12 a 32 b 13 a 31 b 21 a 31 b 22 a 31 b 23 a 32 b 21 a 32 b 22 a 32 b 23 ] \begin{bmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\\a_{31}&a_{32}\end{bmatrix}\otimes\begin{bmatrix}b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\end{bmatrix}= \begin{bmatrix}a_{11}b_{11}&a_{11}b_{12}&a_{11}b_{13}&a_{12}b_{11}&a_{12}b_{12}&a_{12}b_{13}\\ a_{11}b_{21}&a_{11}b_{22}&a_{11}b_{23}&a_{12}b_{21}&a_{12}b_{22}&a_{12}b_{23}\\ a_{21}b_{11}&a_{21}b_{12}&a_{21}b_{13}&a_{22}b_{11}&a_{22}b_{12}&a_{22}b_{13}\\ a_{21}b_{21}&a_{21}b_{22}&a_{21}b_{23}&a_{22}b_{21}&a_{22}b_{22}&a_{22}b_{23}\\ a_{31}b_{11}&a_{31}b_{12}&a_{31}b_{13}&a_{32}b_{11}&a_{32}b_{12}&a_{32}b_{13}\\ a_{31}b_{21}&a_{31}b_{22}&a_{31}b_{23}&a_{32}b_{21}&a_{32}b_{22}&a_{32}b_{23}\end{bmatrix} a11a21a31a12a22a32[b11b21b12b22b13b23]=a11b11a11b21a21b11a21b21a31b11a31b21a11b12a11b22a21b12a21b22a31b12a31b22a11b13a11b23a21b13a21b23a31b13a31b23a12b11a12b21a22b11a22b21a32b11a32b21a12b12a12b22a22b12a22b22a32b12a32b22a12b13a12b23a22b13a22b23a32b13a32b23 补充说明6(结束)

由上述说明,可知:若定义单位阵 ( I K ) K , K (\boldsymbol I_K)_{K,K} (IK)K,K,则有
( ( F ) T , T ( P T ) T , D ) T , D ⊗ ( I K ) K , K = ( F P T ⊗ I K ) ( T × K ) , ( D × K ) ((\boldsymbol F)_{T,T}(\boldsymbol P^T)_{T,D})_{T,D}\otimes (\boldsymbol I_K)_{K,K}=(\boldsymbol F\boldsymbol P^T\otimes\boldsymbol I_K)_{(T\times K),(D\times K)} ((F)T,T(PT)T,D)T,D(IK)K,K=(FPTIK)(T×K),(D×K) 这样便可以与设计的特别长的列向量 ( h ) ( D × K ) , 1 (\boldsymbol h)_{(D\times K),1} (h)(D×K),1 进行运算,如下:
( g ^ ) ( T × K ) , 1 = T ( F P T ⊗ I K ) ( T × K ) , ( D × K ) ( h ) ( D × K ) , 1 (\hat\boldsymbol g)_{(T\times K),1}=\sqrt{T}(\boldsymbol F\boldsymbol P^T\otimes\boldsymbol I_K)_{(T\times K),(D\times K)}(\boldsymbol h)_{(D\times K),1} (g^)(T×K),1=T (FPTIK)(T×K),(D×K)(h)(D×K),1 若记 X ^ \hat\boldsymbol X X^ 为:
X ^ = [ d i a g ( x ^ 1 ) T , d i a g ( x ^ 2 ) T , ⋯   , d i a g ( x ^ K ) T ] \hat\boldsymbol X=\begin{bmatrix}diag(\hat\boldsymbol x_1)^T,diag(\hat\boldsymbol x_2)^T,\cdots,diag(\hat\boldsymbol x_K)^T\end{bmatrix} X^=[diag(x^1)T,diag(x^2)T,,diag(x^K)T] 这样 ( ∗ ) (*) () 式可以写成:
X ^ T ( F P T ⊗ I K ) h \hat\boldsymbol X\sqrt{T}(\boldsymbol F\boldsymbol P^T\otimes\boldsymbol I_K)\boldsymbol h X^T (FPTIK)h 引入等式表达(用于后续 ADMM 求解): g ^ = T ( F P T ⊗ I K ) h \hat\boldsymbol g=\sqrt{T}(\boldsymbol F\boldsymbol P^T\otimes\boldsymbol I_K)\boldsymbol h g^=T (FPTIK)h 最后得到频域表达式,公式(4):
E ( h , g ^ ) = 1 2 ∥ y ^ − X ^ g ^ ∥ 2 2 + λ 2 ∥ h ∥ 2 2 (3) E(\boldsymbol h,\hat\boldsymbol g)=\frac{1}{2}\lVert\hat\boldsymbol y-\hat\boldsymbol X\hat\boldsymbol g\rVert_2^2+\frac{\lambda}{2}\lVert\boldsymbol h\rVert_2^2\tag{3} E(h,g^)=21y^X^g^22+2λh22(3)

参考链接
辨析matmul product(一般矩阵乘积),hadamard product(哈达玛积)、kronecker product(克罗内克积)
【目标跟踪: 相关滤波器 三】循环矩阵

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值