笔者在之前的python学习中,对于python环境的配置一直基于非常浅层次的理解,仅仅是在网络上搜集罗列各种代码然后当cv工程师配置,于是对于python各种环境的配置原理不清楚。
这种环境配置对于解决课程问题绰绰有余,但是当笔者开始学习机器学习的时候,发现版本不兼容以及环境冲突的问题让人不胜其扰。所以花时间去学习之前所有不理解的名词、方法的原理,并总结如下。
python环境
python环境是指在一个特定的位置包含了Python解释器及其周围的工具、库和配置,他们共同构成了python程序执行的环境。
python运行环境提供了执行python代码所需的一切支持。
一般分为两种: 全局环境和虚拟环境
1.全局环境
- 全局环境是指安装在操作系统上的python环境
- 它是所有python程序的默认环境,除非特别指定使用其他环境
- 修改全局环境会影响系统上所有使用这个python解释器的项目
2.虚拟环境
- 虚拟环境是一个独立的环境,可以有自己的python解释器和一组包
- 它使得不同的项目可以有不同的依赖,不会相互干扰
- 虚拟环境一般位于项目文件夹中,便于管理和迁移
python环境的组成
pyhon解释器
python运行环境的核心是解释器,一般分为python2和python3
开发工具
开发和调试的工具,包括集成开发环境(IDE)Pycharmÿ