PyTorch 如何从头开始训练分类器【附完整代码】

训练分类器

1.数据处理

通常,我们会遇到处理图像,文本,音频或视频数据时,可以使用Python标准包将数据加载到 NumPy 数组中。 然后,您可以将该数组转换为torch.*Tensor格式的数据。

  • 对于图像,Pillow,OpenCV 包
  • 对于音频,使用 SciPy 和 librosa 等包
  • 对于文本,基于 Python 或 Cython 的原始加载,或者 NLTK 和 SpaCy

另外,pytorch针对视觉,还创建了一个torchvision的包,其中包含常见的数据集集(例如Imagenet,GIFAR10,MNIST)的数据加载器以及用于图像(即torchvision.datasetstorch.utils.data.DataLoader)的数据转换器。

本文讲解用CIFAR10数据,完成分类问题。它具有以下类别:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”。 CIFAR-10 中的图像尺寸为3x32x32,即尺寸为32x32像素的 3 通道彩色图像。

2.训练图像分类器

步骤:

  1. 使用torchvision加载并标准化 CIFAR10 训练和测试数据集
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 根据训练数据训练网络
  5. 在测试数据上测试网络

2.1 读取CIFAR10数据,做标准化

import torch
import torchvision
import torchvision.transforms as transforms
# transforms将三通道(0,1)区间的数据转换成(-1,1)的数据

TorchVision数据集的输出是[0, 1]范围的PILImage图像。 我们将它们转换为归一化范围[-1, 1]的张量。

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 存取数据
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data\cifar-10-python.tar.gz

HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))


Extracting ./data\cifar-10-python.tar.gz to ./data
Files already downloaded and verified

展示部分图片:

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

在这里插入图片描述

 bird   cat   cat  deer

2.2 定义卷积神经网络

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

2.3定义损失函数和优化器

这里我们使用分类交叉熵损失和带有动量的 SGD。

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

2.4训练网络

只需要遍历数据迭代器,然后将输入馈送到网络并进行优化即可。

for epoch in range(2):  # 训练两次

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')
[1,  2000] loss: 2.175
[1,  4000] loss: 1.889
[1,  6000] loss: 1.697
[1,  8000] loss: 1.594
[1, 10000] loss: 1.527
[1, 12000] loss: 1.476
[2,  2000] loss: 1.383
[2,  4000] loss: 1.362
[2,  6000] loss: 1.330
[2,  8000] loss: 1.348
[2, 10000] loss: 1.316
[2, 12000] loss: 1.316
Finished Training

保存模型:

# 保存在当前文件夹下,pth文件
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

2.5 根据测试数据测试网络

我们已经在训练数据集中对网络进行了 2 次训练。 但是我们需要检查网络是否学到了什么。

我们将通过预测神经网络输出的类别标签并根据实际情况进行检查来进行检查。 如果预测正确,则将样本添加到正确预测列表中。

# 显示测试集中的图像
dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

在这里插入图片描述

GroundTruth:    cat  ship  ship plane

加载模型:

net = Net()
net.load_state_dict(torch.load(PATH))
<All keys matched successfully>
outputs = net(images)
print(outputs)
tensor([[-2.1010, -3.0878,  1.4055,  3.2283,  0.0129,  1.6000,  3.7093, -1.6727,
         -1.0253, -2.4035],
        [ 4.8515,  5.2974, -1.5895, -2.5089, -2.3749, -4.2794, -4.5515, -4.6212,
          8.2107,  3.2727],
        [ 2.6539,  1.8801,  0.0768, -1.7280, -0.6224, -2.2073, -2.3949, -1.8895,
          3.7800,  0.6642],
        [ 2.4435,  0.5671, -0.2488, -0.9293, -0.1690, -1.8434, -1.9284, -1.1686,
          3.3121,  0.1381]], grad_fn=<AddmmBackward>)

上面的输出是四个test例子在10个类别上的能量,能量越高,网络就认为是该类概率越大。

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
Predicted:   frog  ship  ship  ship

网络在整个数据集上的表现:

correct = 0
total = 0
with torch.no_grad(): # 不需要梯度
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
Accuracy of the network on the 10000 test images: 54 %

具体看一些网络在那些类上表现良好,在那些类上表现不佳:

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))
Accuracy of plane : 58 %
Accuracy of   car : 81 %
Accuracy of  bird : 42 %
Accuracy of   cat : 33 %
Accuracy of  deer : 37 %
Accuracy of   dog : 34 %
Accuracy of  frog : 82 %
Accuracy of horse : 51 %
Accuracy of  ship : 78 %
Accuracy of truck : 46 %

判断GPU是否可用

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)
cpu

如过GPU可用的话:

# 把网络传到GPU
net.to(device)
# 把输入和lables传入GPU
inputs, labels = data[0].to(device), data[1].to(device)
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CTPN(Connectionist Text Proposal Network)是一种用于文本检测的深度学习模型。要训练CTPN,需要以下步骤: 1. 数据准备:收集大量的文本图像,标注每个图像中的文本区域和对应的字符框。可以使用工具如LabelImg来进行标注。 2. 数据预处理:将图像和标注转换为模型可以理解的格式。一般来说,需要将图像进行缩放、裁剪和归一化处理,将标注转换为文本区域的坐标和对应的字符框的坐标。 3. 构建模型:使用PyTorch框架构建CTPN模型。一般来说,可以使用现有的预训练模型进行微调,也可以从头开始构建模型。 4. 训练模型:使用训练数据集对模型进行训练训练过程中,可以使用优化器如Adam或SGD来调整模型参数,使用损失函数如交叉熵损失函数来评估模型性能。 5. 测试模型:使用测试数据集对训练好的模型进行测试,评估模型的性能指标如准确率、召回率和F1值。 6. 模型优化:根据测试结果对模型进行优化,调整模型参数或结构,提高模型性能。 以上是训练CTPN的一般步骤,具体实现需要根据具体问题和数据集进行调整。 ### 回答2: PyTorch CTPN(Connectionist Text Proposal Network)是一种基于深度学习的文本检测模型,用于文字检测和识别。下面是关于PyTorch CTPN训练的一些回答。 PyTorch CTPN模型训练过程可以简单地分为以下几个步骤: 1. 数据预处理:首先,需要准备一些标注好的数据集,其中包含了图像中文本的位置标签。然后,对这些图像进行预处理,例如调整图像大小、归一化图像尺度等。 2. 网络设计:接下来,需要设计CTPN模型的网络结构。PyTorch提供了丰富的神经网络组件和API,可以方便地搭建模型。CTPN模型通常由特征提取网络和文本检测网络组成。 3. 损失函数定义:定义合适的损失函数对模型进行训练是很重要的。对于CTPN模型,常用的损失函数有平滑L1损失、交叉熵损失等。这些损失函数可以帮助模型学习到正确的文本位置和类别预测。 4. 模型训练:在PyTorch中,可以使用自定义的数据加载器将数据输入到模型中。通过迭代训练数据以及使用反向传播算法,可以逐步更新模型的权重参数,使其逐渐收敛到最佳状态。 5. 参数调优和模型评估:训练过程中,可以使用一些优化算法(如随机梯度下降)对模型的超参数进行调优,以进一步提升模型的性能。此外,可以使用一部分数据集进行模型评估,计算模型在文本检测和识别任务上的准确率、召回率等评价指标。 在训练过程中,还可以使用一些技巧来提升模型的性能,例如数据增强、学习率调整、模型融合等。 总之,PyTorch CTPN训练过程主要包括数据预处理、网络设计、损失函数定义、模型训练、参数调优和模型评估等步骤。通过这些步骤,可以训练出一个高性能的文本检测和识别模型。 ### 回答3: PyTorch CTPN是一种使用PyTorch框架进行训练的CTPN(Convolutional Text Proposal Network)模型。在训练CTPN之前,我们需要准备训练数据集和相应的标签。 首先,我们需要准备带有文本区域的图像数据集。这些图像可以是带有文本的自然场景图像或合成的文本图像。然后,我们需要为每个文本区域标注一个位置和文本的标签。标签可以是一个二值的文本/非文本标签,用于指示区域是否包含文本。 接下来,我们可以开始训练CTPN模型。在训练之前,我们需要定义网络的结构和超参数,如学习率、损失函数等。我们可以使用预训练模型作为基础网络,并根据我们的需求进行微调。 在训练过程中,我们将输入图像送入CTPN模型,并将预测的文本区域与真实的文本区域进行比较。我们使用定位损失函数(如SmoothL1Loss)来度量预测区域和真实区域之间的差异,并使用分类损失函数(如交叉熵损失)来度量预测区域是否为文本区域。通过将定位损失和分类损失相结合,我们可以计算出总体的损失。然后,我们使用反向传播算法来更新网络的权重,以最小化损失函数。 训练过程通常需要多次迭代,每次迭代使用一个小批量的图像进行训练。我们可以使用优化器(如Adam)来自动调整学习率并更好地训练模型。 最后,当CTPN模型收敛并获得满意的性能时,我们可以将模型保存下来以在新的图像上进行文本检测和定位。 总之,PyTorch CTPN训练是一个通过准备数据集、定义网络结构和超参数、使用损失函数和优化器进行迭代训练的过程,以实现文本检测和定位的模型训练过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值