深度学习(一)深层神经网络的搭建【附实例代码】

深层神经网络


前面一篇我们简要介绍了神经网络的一些基本知识,同时也是示范了如何用神经网络构建一个复杂的非线性二分类器,更多的情况神经网络适合使用在更加复杂的情况,比如图像分类的问题,下面我们用深度学习的入门级数据集 MNIST 手写体分类来说明一下更深层神经网络的优良表现。

1. MNIST 数据集

mnist 数据集是一个非常出名的数据集,基本上很多网络都将其作为一个测试的标准,其来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员,一共有 60000 张图片。 测试集(test set) 也是同样比例的手写数字数据,一共有 10000 张图片。

每张图片大小是 28 x 28 的灰度图,如下:
在这里插入图片描述

所以我们的任务就是给出一张图片,我们希望区别出其到底属于 0 到 9 这 10 个数字中的哪一个。

2. 多分类问题

前面我们讲过二分类问题,现在处理的问题更加复杂,是一个 10 分类问题,统称为多分类问题,对于多分类问题而言,我们的 loss 函数使用一个更加复杂的函数,叫交叉熵

2.1 softmax

提到交叉熵,我们先讲一下 softmax 函数,前面我们见过了 sigmoid 函数,如下

s ( x ) = 1 1 + e − x s(x)=\frac{1}{1+e^{-x}} s(x)=1+ex1

可以将任何一个值转换到 0 ~ 1 之间,当然对于一个二分类问题,这样就足够了,因为对于二分类问题,如果不属于第一类,那么必定属于第二类,所以只需要用一个值来表示其属于其中一类概率,但是对于多分类问题,这样并不行,需要知道其属于每一类的概率,这个时候就需要 softmax 函数了。

在这里插入图片描述

对于网络的输出 z 1 , z 2 , ⋯ z k z_1, z_2, \cdots z_k z1,z2,zk,我们首先对他们每个都取指数变成 e z 1 , e z 2 , ⋯   , e z k e^{z_1}, e^{z_2}, \cdots, e^{z_k} ez1,ez2,,ezk,那么每一项都除以他们的求和,也就是

z i → e z i ∑ j = 1 k e z j zi \rightarrow \frac{e^{z_i}}{\sum_{j=1}^{k} e^{z_j}} zij=1kezjezi

如果对经过 softmax 函数的所有项求和就等于 1,所以他们每一项都分别表示属于其中某一类的概率。

2.2 交叉熵

交叉熵衡量两个分布相似性的一种度量方式,前面讲的二分类问题的 loss 函数就是交叉熵的一种特殊情况,交叉熵的一般公式为

c r o s s − e n t r o p y ( p , q ) = E p [ − log ⁡ q ] = − 1 m ∑ x p ( x ) log ⁡ q ( x ) cross-entropy(p,q)=E_p[- \log{q}]= -\frac{1}{m} {\textstyle \sum_{x}} p(x) \log{q(x)} crossentropy(p,q)=Ep[logq]=m1xp(x)logq(x)

对于二分类问题,我们可以写成:
− 1 m ∑ i = 1 m ( y i log ⁡ s i g m o i d ( x i ) + ( 1 − y i ) log ⁡ ( 1 − s i g m o i d ( x i ) ) -\frac{1}{m} \sum_{i=1}^m (y^{i} \log sigmoid(x^{i}) + (1 - y^{i}) \log (1 - sigmoid(x^{i})) m1i=1m(yilogsigmoid(xi)+(1yi)log(1sigmoid(xi))

下面我们直接用 mnist 举例,讲一讲深度神经网络

3. 数据加载

import numpy as np
import torch
from torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据

import torch.nn as nn
# 使用内置函数下载 mnist 数据集
train_set = mnist.MNIST('./data', train=True, download=True)
test_set = mnist.MNIST('./data', train=False, download=True)
a_data, a_label = train_set[0]
a_data

在这里插入图片描述

a_label
5

这里的读入的数据是 PIL 库中的格式,我们可以非常方便地将其转换为 numpy array

a_data = np.array(a_data, dtype='float32')
print(a_data.shape)
(28, 28)

这里我们可以看到这种图片的大小是 28 x 28

里面的 0 就表示黑色,255 表示白色

对于神经网络,我们第一层的输入就是 28 x 28 = 784,所以必须将得到的数据我们做一个变换,使用 reshape 将他们拉平成一个一维向量:

def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到
    x = x.reshape((-1,)) # 拉平
    x = torch.from_numpy(x)
    return x

train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True)
# 重新载入数据集,申明定义的数据变换 transform
test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)
再看一个例子:
a, a_label = train_set[0]
print(a.shape)
print(a_label)
torch.Size([784])
5
from torch.utils.data import DataLoader
# 使用 pytorch 自带的 DataLoader 定义一个数据迭代器

# 训练数据64个为一个batch
train_data = DataLoader(train_set, batch_size=64, shuffle=True) 
# 测试数据128个为一个batch
test_data = DataLoader(test_set, batch_size=128, shuffle=False)

使用这样的数据迭代器是非常有必要的,如果数据量太大,就无法一次将他们全部读入内存,所以需要使用 python 迭代器,每次生成一个批次的数据

a, a_label = next(iter(train_data))

# 打印出一个批次的数据大小
print(a.shape)
print(a_label.shape)
torch.Size([64, 784])
torch.Size([64])

4. 搭建网络并训练

  1. 定义四层神经网络:
import torch.nn.functional as F

class my_net(nn.Module):
    def __init__(self):
        super(my_net,self).__init__()
        self.fc1=nn.Linear(784,400)
        self.fc2=nn.Linear(400,200)
        self.fc3=nn.Linear(200,100)
        self.fc4=nn.Linear(100,10)
        
    def forward(self,x):
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=F.relu(self.fc3(x))
        
        return x

net= my_net()  
print(net)
my_net(
  (fc1): Linear(in_features=784, out_features=400, bias=True)
  (fc2): Linear(in_features=400, out_features=200, bias=True)
  (fc3): Linear(in_features=200, out_features=100, bias=True)
  (fc4): Linear(in_features=100, out_features=10, bias=True)
)
  1. 定义损失
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1
  1. 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []
for e in range(20):
    train_loss = 0
    train_acc = 0
    #net.train()
    for im, label in train_data:
        im = im
        label = label
        
        # 前向传播
        out = net(im)
        loss = criterion(out, label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 记录误差
        train_loss += loss.item()
        
        # 计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / im.shape[0]
        train_acc += acc

    losses.append(train_loss / len(train_data))
    acces.append(train_acc / len(train_data))
    
    # 在测试集上检验效果
    eval_loss = 0
    eval_acc = 0
    #net.eval() # 将模型改为预测模式
    for im, label in test_data:
        im = im
        label = label
        out = net(im)
        loss = criterion(out, label)
        # 记录误差
        eval_loss += loss.item()
        # 记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / im.shape[0]
        eval_acc += acc

    eval_losses.append(eval_loss / len(test_data))
    eval_acces.append(eval_acc / len(test_data))
    print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'
          .format(e, train_loss / len(train_data), train_acc / len(train_data), 
                     eval_loss / len(test_data), eval_acc / len(test_data)))
epoch: 0, Train Loss: 0.525348, Train Acc: 0.847848, Eval Loss: 0.271614, Eval Acc: 0.910799
epoch: 1, Train Loss: 0.166704, Train Acc: 0.950043, Eval Loss: 0.141554, Eval Acc: 0.957081
epoch: 2, Train Loss: 0.115453, Train Acc: 0.964186, Eval Loss: 0.118387, Eval Acc: 0.962025
epoch: 3, Train Loss: 0.090116, Train Acc: 0.971948, Eval Loss: 0.091326, Eval Acc: 0.972409
epoch: 4, Train Loss: 0.072630, Train Acc: 0.977412, Eval Loss: 0.115369, Eval Acc: 0.962816
epoch: 5, Train Loss: 0.060656, Train Acc: 0.981177, Eval Loss: 0.075957, Eval Acc: 0.975178
epoch: 6, Train Loss: 0.051926, Train Acc: 0.983625, Eval Loss: 0.073108, Eval Acc: 0.976958
epoch: 7, Train Loss: 0.044283, Train Acc: 0.985441, Eval Loss: 0.065057, Eval Acc: 0.979430
epoch: 8, Train Loss: 0.037566, Train Acc: 0.987807, Eval Loss: 0.081599, Eval Acc: 0.974387
epoch: 9, Train Loss: 0.032722, Train Acc: 0.989322, Eval Loss: 0.067153, Eval Acc: 0.977650
epoch: 10, Train Loss: 0.027649, Train Acc: 0.991238, Eval Loss: 0.059325, Eval Acc: 0.982694
epoch: 11, Train Loss: 0.023471, Train Acc: 0.992437, Eval Loss: 0.071508, Eval Acc: 0.979529
epoch: 12, Train Loss: 0.019128, Train Acc: 0.994270, Eval Loss: 0.076266, Eval Acc: 0.977749
epoch: 13, Train Loss: 0.017213, Train Acc: 0.994453, Eval Loss: 0.083231, Eval Acc: 0.976365
epoch: 14, Train Loss: 0.015447, Train Acc: 0.995203, Eval Loss: 0.059105, Eval Acc: 0.983584
epoch: 15, Train Loss: 0.013146, Train Acc: 0.996252, Eval Loss: 0.067653, Eval Acc: 0.980320
epoch: 16, Train Loss: 0.012747, Train Acc: 0.996269, Eval Loss: 0.298849, Eval Acc: 0.915645
epoch: 17, Train Loss: 0.186615, Train Acc: 0.962054, Eval Loss: 0.082878, Eval Acc: 0.974288
epoch: 18, Train Loss: 0.043081, Train Acc: 0.985158, Eval Loss: 0.074628, Eval Acc: 0.977551
epoch: 19, Train Loss: 0.033418, Train Acc: 0.988956, Eval Loss: 0.072757, Eval Acc: 0.978441
  1. 画出 loss 曲线和 准确率曲线
import matplotlib.pyplot as plt
%matplotlib inline

plt.title('train loss')
plt.plot(np.arange(len(losses)), losses);

在这里插入图片描述

plt.plot(np.arange(len(acces)), acces)
plt.title('train acc')
Text(0.5, 1.0, 'train acc')

在这里插入图片描述

plt.plot(np.arange(len(eval_losses)), eval_losses)
plt.title('test loss')
Text(0.5, 1.0, 'test loss')

在这里插入图片描述

plt.plot(np.arange(len(eval_acces)), eval_acces)
plt.title('test acc')
Text(0.5, 1.0, 'test acc')

在这里插入图片描述

可以看到我们的三层网络在训练集上能够达到 99.9% 的准确率,测试集上能够达到 98.20% 的准确率

参考:深度学习入门

  • 7
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度学习是当今计算机科学领域最为热门的研究方向之一,其在图像分类、语言识别、自然语言处理等诸多领域都有广泛的应用。而卷积神经网络(CNN)是深度学习中最为核心的模型之一,它能够有效地提取图像的特征并进行分类。本文将介绍如何使用matlab搭建卷积神经网络。 首先,我们需要准备好所需的数据集,这是构建卷积神经网络的必要条件。可以在网上找到一些现成的数据集,如MNIST手写数字数据集,CIFAR-10图像分类数据集等等。 接下来,我们需要创建一个卷积神经网络。在matlab中,可以使用Deep Learning Toolbox来创建卷积神经网络模型。我们需要指定网络的层数、每层的神经元个数、激活函数等参数,以及网络的损失函数、优化算法等参数。 然后,我们需要将数据集分成训练集和测试集,并将其加载到matlab的工作空间中。可以使用matlab自带的数据集加载函数或者自己编写数据集加载函数来完成这一步骤。 接下来,我们需要对数据进行预处理,以便将其交给卷积神经网络进行训练。预处理包括图像的标准化、图像增强、数据扩充等操作。 最后,我们需要使用trainNetwork函数来训练我们的卷积神经网络,并使用testNetwork函数来测试网络的性能。网络训练完毕后,可以保存模型以备将来使用。 总的来说,用matlab进行卷积神经网络搭建十分方便,并且matlab还提供了许多实用的工具箱和函数来辅助网络的训练和测试。若想深入研究深度学习,matlab是一个不错的选择。 ### 回答2: 深度学习是现代计算机科学的热门领域,它通过神经网络的层次结构来学习复杂的模式,特别是在图像、语音和自然语言处理上表现突出。Matlab是一种广泛用于数学建模、数据分析和科学计算的软件工具,也被用于深度学习领域。本文将介绍如何使用Matlab从零开始搭建卷积神经网络CNN。 首先,我们需要导入一些深度学习常用的库。例如 MatConvNet 和 VLFeat,这两个库都是由Matlab编写的,方便用户在Matlab中实现卷积神经网络。接下来,我们需要构建神经网络的模型,包括卷积层、池化层、全连接层等。这里,我们将使用卷积层、池化层交替的组合来搭建CNN模型,并设置相关的参数,例如数目、步长和大小等。 然后,我们需要准备好训练数据和测试数据,这些数据可以是图像、语音或文本等。我们需要将数据集进行预处理,例如归一化、预处理等,以确保数据数据量相等和格式标准化。接下来,我们需要定义模型的训练方法,例如使用反向传播算法以最小化误差和损失函数,而优化器可以选择常用的SGD、Adam或Adagrad等。 最后,我们需要对我们训练好的模型进行测试,测试过程中会给出一些输入样例,然后模型会输出对应的预测结果,我们可以根据这些结果来评估模型的性能和准确度。如果模型的性能不好,我们可以使用更多的层数、更多的节点或更多的数据来改善模型。 总之,使用Matlab搭建卷积神经网络的过程比较复杂,需要对深度学习的知识有一定的了解,并具备一定的程序能力。通过本文的介绍,相信读者能够初步了解到如何搭建卷积神经网络,并在实践中逐渐提高自己的能力。 ### 回答3: 在进行深度学习研究时,卷积神经网络(CNN)是一种非常常见的网络结构。使用Matlab可以高效地实现并训练CNN。下面将以一个简单的手写数字识别任务为例,从0开始介绍如何在Matlab中搭建和训练卷积神经网络。 首先需要导入手写数字数据集。在Matlab中已经内置了一个手写数字数据集,可以使用以下命令导入: ``` digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos','nndatasets','DigitDataset'); imds = imageDatastore(digitDatasetPath, 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); ``` 接下来,需要设置网络结构和超参数。这里选择一个包含两个卷积层和两个全连接层的CNN,同时设置学习率、迭代轮数等超参数。 ``` layers = [ imageInputLayer([28 28 1]) convolution2dLayer(3,16,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,32,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(256) batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer]; options = trainingOptions('adam', ... 'MaxEpochs',20,... 'MiniBatchSize',128, ... 'InitialLearnRate',0.001, ... 'Shuffle','every-epoch', ... 'Verbose',false, ... 'Plots','training-progress'); ``` 然后可以开始训练模型。使用以下命令可以开始训练: ``` net = trainNetwork(imds,layers,options); ``` 最后,可以使用测试集对训练好的模型进行评估,并计算出模型的准确率: ``` YPred = classify(net,augimdsTest); YTest = imdsTest.Labels; accuracy = sum(YPred == YTest)/numel(YTest); ``` 通过这个例子,可以看出使用Matlab搭建和训练卷积神经网络是非常简单的。同时,Matlab提供了许多预训练模型和工具箱,可以方便地进行深度学习研究和应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值