目录
数据结构和算法分析的文章:
算法与数据结构(一):算法效率的衡量
算法与数据结构(二):线性表(包括代码实现)
算法与数据结构(三):栈与队列
一:排序算法介绍及算法的稳定性概念
(一):排序算法的定义
排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。
(二):排序算法的稳定性
稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7)(5, 6)
在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
二:冒泡排序算法
(一):冒泡排序算法概念
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
- 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
(二):冒泡排序的分析
交换过程图示(第一次):
那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:
(三):冒泡排序Python实现
实现方式一:
def bubble_sort(alist):
# j表示每次遍历需要比较的次数,是逐渐减小的
for j in range(len(alist)-1,0,-1):
# i表示一次比较要比较多少次
for i in range(j):
if alist[i] > alist[i+1]:
alist[i], alist[i+1] = alist[i+1], alist[i]
if __name__=="__main__":
li = [54,26,93,17,77,31,44,55,20]
print(li)
bubble_sort(li)
print(li)
运行效果:
实现方式二:
def bubble_sort(alist):
n = len(alist)
# j表示每次遍历需要比较的次数,是逐渐减小的
for j in range(n-1):
# i表示一次比较要比较多少次
for i in range(0, n-1-j):
if alist[i] > alist[i+1]:
alist[i], alist[i+1] = alist[i+1], alist[i]
if __name__=="__main__":
li = [54,26,93,17,77,31,44,55,20]
print(li)
bubble_sort(li)
print(li)
但是这样会出现一个问题,由于没吃比较没有记录、即使是一个完全有序的序列、例如 li = [1,2,3,4,5,6,7,8,9]所用的时间开销也为O(n^2)、为了改善这种情况,我们可以对实现方式二进行一个升级。
实现方式二plus:
def bubble_sort_plus(alist):
n = len(alist)
# j表示每次遍历需要比较的次数,是逐渐减小的
for j in range(n-1):
count = 0 # 用于记录一次比较过程中交换了多少次数据、交换0次、已经排序完成!!!
# i表示一次比较要比较多少次
for i in range(0, n-1-j):
if alist[i] > alist[i+1]:
alist[i], alist[i+1] = alist[i+1], alist[i]
count +=1
if 0 == count:
return
if __name__=="__main__":
li = [54,26,93,17,77,31,44,55,20]
print(li)
bubble_sort_plus(li)
print(li)
(四):算法时间复杂度分析
- 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
- 最坏时间复杂度:O(n2)
- 稳定性:稳定
(五):冒泡排序的动态图演示