数据仓库简单梳理(数据挖掘前瞻)

本文主要介绍了数据仓库的基本概念,包括Subject-Oriented、Integrated、Time Variant和Nonvolatile四个特性,并对比了OLTP与OLAP的区别。此外,还讨论了数据仓库的独立性、多维数据模型以及常见的OLAP操作,如Roll up、Drill down、Slice and dice等。最后,概述了数据仓库的理论实现过程。
摘要由CSDN通过智能技术生成

数据仓库

知识发现流程

数据清洗集成——数据仓库——选择迁移——数据挖掘——模式评估

数据仓库

数据仓库是一个面向主题的,集成的,时时变化的且非易失的数据集合
数据仓库的定义不严格,但普遍具有的特征:

  • 与数据库分开维护,独立决策
  • 通过数据分析提供信息处理方式

数据仓库的Subject-Oriented

  • 围绕核心主题
  • 关注数据建模和分析,而不是数据操作
  • 为决策提供简单可分析的视图

数据仓库的Integrated

  • 异构数据
  • 关系数据库,平面文件,联机事物

数据仓库的Time Variant

显而易见,数据仓库的时间跨度比数据库长

数据仓库的Nonvolatile

  • 物理隔离的存储
  • 数据不会像数据库长期更新

OLTP和OLAP


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值