数据治理技术篇:(一)数据梳理

文章介绍了数据梳理的重要性,包括了解企业数据、支持数仓建设和数据治理。自上而下的方法从业务视角出发,通过数据域、主题、实体到模型的分解;自下而上则以需求为导向,直接针对目标数据建模。两种方法各有优缺点,前者全面系统,后者针对性强但可能缺乏全局视野。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.定义

2.用途作用

3.实施方法

3.1自上而下

3.1.1数据域梳理

3.1.2数据主题梳理

3.1.3 数据实体梳理

3.1.4设计数据模型

3.1.5优点

3.1.5缺点

3.2自下而上

 3.2.1需求分析

3.2.2展现

3.2.3分析逻辑

 3.2.4数据建模

 3.2.5优点

  3.2.6缺点


1.定义

         “数据梳理”即对企业数据资产的梳理。

2.用途作用

        在通过对数据的过程中,可知晓企业当中到底有哪些儿数据,这些数据存储在哪些地方,数据质量如何。数据梳理能够帮助我们对企业数据资产进行摸底,为数仓建设-建模提供有力地支撑。

3.实施方法

3.1自上而下

        自上而下的数据梳理指从企业业务视角中出发,通过业务流程进行全面分析,逐层分解。

由数据域→数据主题→数据实体→数据模型→,一步步细化、抽象、设计出来的实体数据模型的过程。

3.1.1数据域梳理

        在业务调研后,可以进行数据域的划分。划分主题域,需要分析各个业务模块中有哪些业务活动。通常都按业务系统划分,比如:“人力资源管理系统”对应“人力资源数据域”,“财务管理系统”对应“财务数据域”,“供应链管理系统”对应“供应链数据域”.....等等。

3.1.2数据主题梳理

        数据主题梳理是指,按照部门职能、业务流程来梳理数据域的二级主题。

        例如:

                人力资源数据域下包含的二级主题有:招聘管理、培训管理、人事管理、薪酬福利管理、绩效考核管理...等。

                供应链数据域下包含的二级主题有:供应商、销售、商品物料、仓库....等。

3.1.3 数据实体梳理

        数据实体梳理是指数据主题所涉及的各类业务单据、用户视图进行数据收集和分析,细化出业务主题所包含的数据实体和数据实体涉及的数据元素。

        例如:

                人事管理主题包含的实体有:组织机构、岗位、人员等

3.1.4设计数据模型

        逻辑模型设计:对实体进行抽象,描述实体之间的继承或关联关系,明确数据结构的属性构成等。

        物理模型设计:描述的物理数据存储结构和数据关系。

3.1.5优点

        全面系统的梳理,通过数据域 -》 数据主题 -》 数据实体 -》数据模型的逐层分解,使企业清晰地了解企业数据的来龙去脉,有助于企业把握各类数据的源头,确保数据的有效性、完整性和一致性,有效消除信息孤岛。

3.1.5缺点

        需要较大的成本和较长的时间周期来进行数据梳理

3.2自下而上

        自下而上的数据梳理特点是比较有针对性,直击目标和需求。该方法以目标和需求为驱动,一步步梳理出实现需求所需要的数据,并确定数据的来源、数据结构及数据实体之间的关系。

 3.2.1需求分析

        数据治理是一个复杂的过程,项目的开发涉及多方面的问题和风险,如技术风险、数据质量问题、项目管理问题,但项目中最隐蔽、最容易忽略、最难控制的一环就是需求的调研和分析。需求分析应从IT现状、业务部门、高层希望等方面展开,明确项目的目标和范围。

3.2.2展现

        虽然有了明确的需求,但客户跟关注的是数据的展现形式和效果,因此将不同的数据分析结果推送给不同的客户是该阶段的重点。采用原型的方式可以帮助和引导客户的需求。

3.2.3分析逻辑

        分析逻辑是指分析实现需求的业务逻辑,其输出结果是数据仓库的逻辑模型。逻辑模型用来表达实际业务中的具体业务关系和分析逻辑。

 3.2.4数据建模

        将逻辑模型转化为给数据库存储的物理模型。

 3.2.5优点

        目的性强,从既定的需求触发到具体的数据结构设计,越到底层变化的可能性越小。从整体出发的大规模调研规划相比,这种方式的周期更短、见效更快(主要满足于需求目标),有了明确的项目目标和需求的情况下采用方式最佳。

  3.2.6缺点

        局部梳理,缺乏全面性和系统性,无法支持企业顶层的数据架构设计。

### 医疗数据治理技术方案 医疗数据治理项复杂的任务,涉及多个方面的技术和策略。以下是针对医疗数据治理的技术方案、数据管理和IT架构的设计思路: #### 1. **数据治理框架** 医疗数据治理需要个全面的框架来指导实施。该框架通常包括以下几个核心部分[^2]: - 数据架构管理:定义医疗数据的标准结构和模型。 - 数据质量管理:确保医疗数据的准确性、致性和完整性。 - 数据标准管理:制定统数据标准以促进跨系统的互操作性。 #### 2. **IT架构设计** 为了满足医疗行业的特殊需求,IT架构需具备高可用性、可扩展性和安全性。常见的架构组件包括: - **数据中心**:集中存储和管理医疗数据,采用分布式数据库提高性能和可靠性。 - **云计算平台**:利用云服务提供商(如AWS、Azure)实现弹性计算资源分配。 - **边缘计算**:对于实时性强的应用场景(如远程诊断),通过边缘节点减少延迟。 ```python # 示例代码:基于Python的简单ETL流程用于医疗数据分析 import pandas as pd def load_data(file_path): data = pd.read_csv(file_path) return data def clean_data(data): # 去除重复记录并填充缺失值 cleaned_data = data.drop_duplicates().fillna(0) return cleaned_data def transform_data(cleaned_data): # 转换逻辑可以根据具体业务调整 transformed_data = cleaned_data.groupby('patient_id').sum() return transformed_data if __name__ == "__main__": raw_data = load_data("medical_records.csv") processed_data = transform_data(clean_data(raw_data)) print(processed_data.head()) ``` #### 3. **合规性与安全措施** 医疗数据治理必须严格遵守相关法律法规,例如HIPAA(美国健康保险流通与责任法案)。以下是些具体的合规性和安全措施][^[^34]: - 制定详细的隐私政策,明确规定谁有权访问哪些类型的患者信息。 - 实施数据加密技术,在传输和静止状态下保护敏感信息。 - 开展定期员工培训,增强全员对信息安全重要性的认识。 - 部署入侵检测系统(IDS),及时发现潜在威胁并作出响应。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只爱大锅饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值